
- •43 Аннотация
- •Ведение
- •1. Основные компоненты скс
- •1.1. Задача дипломного проекта
- •1.2. Структура скс
- •1.2.1. Топология скс
- •1.2.2. Технические помещения
- •1.2.3. Подсистемы скс
- •1.2.4. Коммутация в скс
- •1.2.5. Принципы администрирования скс
- •1.2.6. Кабели скс
- •1.3. Понятие классов и категорий и их связь с длинами кабельных трасс
- •1.3.1. Классы приложений, категории кабелей и разъемов скс
- •1.3.2. Ограничения на длины кабелей и шнуров скс
- •1.4. Дополнительные варианты топологического построения скс
- •1.4.1. Варианты построения горизонтальной подсистемы скс
- •1.4.2. Топологии с централизованным администрированием
- •1.5. ПринципCableSharing
- •1.6. Гарантийная поддержка современных скс
- •1.7. Электрические компоненты скс
- •1.7.1. Коммутационные шнуры
- •1.7.2. Коммутационные панели
- •1.7.2.1. Коммутационные панели типа 110
- •1.7.2.2. Коммутационные панели типа 66
- •1.7.2.3. Коммутационные панели с розетками модульных разъемов
- •1.8. Выводы
- •2. Проектирование скс
- •2.1. Задание на проектирование
- •2.2. Стадии проектирования
- •2.2. Исходные данные
- •2.3. Архитектурная стадия проектирования
- •2.4. Телекоммуникационная стадия проектирования
- •2.4.1. Проектирование горизонтальной подсистемы
- •2.4.1.1. Выбор типа и категории телекоммуникационных розеток
- •2.4.1.2. Расчет горизонтального кабеля
- •2.4.1.2.1. Выбор типа и категории
- •2.4.1.2.2. Расчет количества
- •2.4.2. Проектирование подсистемы внутренних магистралей
- •2.4.3. Подсистема кабелей оборудования
- •2.4.3.1. Выбор метода подключения сетевого оборудования к кабельной системе
- •2.4.4. Проектирование административной подсистемы
- •2.4.5. Расчет количества и определение длины оконечных и коммутационных шнуров
- •2.5. Выводы
- •3.Проектирование силовой кабельной системы
- •3.1. Силовые кабельные системы в здании
- •3.2. Выделенная компьютерная силовая кабельная система
- •3.2.1 Распределение силовых компьютерных рабочих мест по группам
- •3.2.2. Расчет состава компонент компьютерной силовой кабельной системы
- •3.2.3. Расчёт однолинейных схем
- •3.3 Система бесперебойного питания
- •3.3.1. Система бесперебойного электропитания на все здание в целом
- •3.3.2 Принципы организации системы
- •3.3.3. Функционирование ибп
- •3.3.3.1. Режимы работы ибп
- •3.3.3.2. Работа от сети
- •3.3.3.3. Работа от батареи
- •3.3.4. Подготовка помещений для размещения оборудования системы бесперебойного питания
- •3.4. Выводы
- •4. Проектирование лвс Введение
- •4.1. Семиуровневая модельOsi
- •4.1.1. Обоснование модели osi
- •4.1.2. Уровни модели osi
- •4.2. Топология сетей
- •4.3. Распространенные сетевые архитектуры
- •4.3.1. Ethernet
- •4.3.1.1. Метод множественного доступа с контролем несущей и обнаружением конфликтов (csma/cd)
- •Ieee802.3
- •4.3.1.2. Форматы кадров вIeee802.3 иEthernet
- •4.3.1.3. СетьEthernetвблизи
- •4.3.1.4. Шины, сегменты и прочее
- •4.3.1.5. 10BaseT
- •4.3.1.6.Ethernetна волоконно-оптических кабелях
- •4.3.2. Высокоскоростные варианты сети Ethernet
- •4.3.2.1. КоммутируемаяEthernet
- •4.3.2.2. Дуплексная Ethernet
- •4.3.2.3. 100-VgAnyLan
- •4.3.3. Fast Ethernet
- •4.3.4. Gigabit Ethernet
- •4.3.5. Стандарт ieee 802.5: сети Token-Ring
- •4.3.5.1. Использование маркеров в сетях 802.5
- •4.3.5.2. СетьTokenRingсо скоростью передачи 16 Мбит/с
- •4.3.5. Стандарт fddi
- •4.3.5.1. Принцип действия сети fddi
- •4.3.5.2. Отказоустойчивость сетей fddi
- •4.4. Сетевое оборудование
- •4.4.1. Концентратор (Hub)
- •4.4.2. Мост (bridge)
- •4.4.3. Коммутатор (switch)
- •4.4.3.1. КоммутацияCut-Through
- •4.4.3.2. Коммутация Interium Cut-Through
- •4.4.3.3. Коммутация Store-and-Forward
- •4.4.3.4. Использование в одной сети разных скоростей передачи
- •4.4.3.5. Гибридные коммутаторы
- •4.4.3.6. Полнодуплексные связи
- •4.4.4. Маршрутизатор (router)
- •4.4.5. Перегрузка
- •4.5. Протокол snmp
- •4.6. Технология rmon
- •4.7. Понятие технологии виртуальных сетей
- •4.8. Проектирование лвс
- •4.8.5. Реализация первого варианта
- •4.8.5.1. Техническая математическая модель лвс
- •4.8.6. Реализация второго варианта
- •4.8.6.1. Расчет параметров для текущих требований
- •4.8.6.2. Выбор активного оборудования
- •4.8.6.3. Технические характеристики
- •4.8.7. Выбор оптимального технического решения
- •4.8.7.1. Определение значимости функций
- •4.8.7.2. Сравнение вариантов
- •4.9. Выводы
- •5. Определение затрат на разработку и внедрение структурированной кабельной системы и системы бесперибойного питания
- •5.1. Инвестиции в реальные активы
- •5.2. Сметная стоимость строительно-монтажных работ
- •5.3. Затраты на приобретение материалов и оборудования, необходимого для монтажа скс
- •5.4. Расчёт эксплуатационных расходов
- •5.5. Расчёт транспортных и командировочных расходов
- •Затраты на создание скс и сбп.
- •5.6. Расчёт затрат на создание лвс
- •5.6.1. Затраты на приобретение материалов и оборудования, необходимого для монтажа лвс
- •5.6.2. Преимущества и недостатки вариантов
- •5.7. Выводы
- •6. Обеспечение безопасности условий труда оператора системы бесперибойного питания
- •6.1. Введение
- •6.1.1. Анализ условий труда
- •6.1.2. Факторы, определяющие исход поражения электрическим током
- •6.2. Основные меры защиты от поражения электрическим током
- •6.2.1. Общие сведения
- •6.2.2. Защитное заземление
- •6.2.4. Напряжение шага
- •6.2.5. Требования по заземлению
- •6.2.6. Зануление
- •6.2.7. Защитное отключение
- •6.2.9. Использование малого напряжения
- •6.2.10. Выравнивание потенциалов
- •6.3. Расчёт заземления
- •6.4. Выводы
- •Заключение
- •Список литературы
1.2.1. Топология скс
В основу любой структурированной кабельной системы положена древовидная топология, которую иногда называют также структурой иерархической звезды. Обобщенная структурная схема СКС изображена на рис. 1. Узлами структуры являются технические помещения (кроссовые и аппаратные), которые соединяются друг с другом и с рабочими местами электрическими и оптическими кабелями. Все кабели, входящие в технические помещения, обязательно заводятся на коммутационное оборудование, на котором осуществляются переключения в процессе текущей эксплуатации кабельной системы. Это обеспечивает гибкость СКС, возможность легкой переконфигурации и адаптируемости под конкретное приложение. Основой для применения именно иерархической звездообразной топологии является возможность ее использования для поддержки работы всех основных сетевых приложений (табл. 2). Из данных этой таблицы следует, что топология рассматриваемого вида является той платформой, которая обеспечивает поддержку работы современных средств передачи данных.
Рис.
1.1. Структурная схема СКС
Таблица 1.1.
Логическая и физическая топология современных сетей передачи данных
Протокол |
Логическая топология |
Физическая топология |
TokenRing |
Кольцо |
Кольцо, звезда |
High Speed Token Ring |
Кольцо |
Кольцо, звезда |
FDDI |
Кольцо |
Кольцо, звезда |
Ethernet |
Шина |
Шина, звезда |
Fast Ethernet |
Шина |
Звезда |
Gigabit Ethernet |
Шина |
Звезда |
ATM |
Виртуальный канал |
Кольцо, звезда |
1.2.2. Технические помещения
Для построения СКС и информационной системы предприятия в целом необходимы технические помещения двух видов: аппаратные и кроссовые. Аппаратной в дальнейшем называется техническое помещение, в котором располагается сетевое оборудование коллективного пользования (АТС, серверы, концентраторы). В том случае, если основной объем установленных в этом помещении технических средств составляет оборудование ЛВС, его называют серверной, а если учрежденческая АТС и системы внешних телекоммуникаций - узлом связи. Аппаратные оборудуются фальшполами, системами пожаротушения, кондиционирования и контроля доступа. Кроссовая представляет собой помещение, в котором размещается коммутационное оборудование СКС, сетевое и другое вспомогательное оборудование. Желательно ее размещение вблизи вертикального стояка, оборудование телефоном и системой контроля доступа. При этом уровень оснащения кроссовой оборудованием инженерного обеспечения ее функционирования в целом является более низким по сравнению с аппаратными. Кроссовые на практике достаточно часто называют просто (этажными) техническими помещениями, а иногда хабовыми. Аппаратная может быть совмещена с кроссовой здания (КЗ). В этом случае его сетевое оборудование может подключаться непосредственно к коммутационному оборудованию СКС. Если аппаратная расположена отдельно, то ее сетевое оборудование подключается к локально расположенному коммутационному оборудованию или к обычным информационным розеткам рабочих мест. В кроссовую внешних магистралей (КВМ) сходятся кабели внешней магистрали, подключающие к ней КЗ. В КЗ заводятся внутренние магистральные кабели, подключающие к ним кроссовые этажей (КЭ). К КЭ, в свою очередь, горизонтальными кабелями подключены информационные розетки рабочих мест.
В качестве дополнительных связей, увеличивающих гибкость и живучесть системы, допускается прокладка внешних магистральных кабелей между КЗ и внутренних магистральных кабелей между КЭ (пример изображен на рис. 1). Во всей СКС может быть только одна КВМ, а в каждом здании может присутствовать не более одной КЗ. Допускается объединение КВМ с КЗ, если они расположены в одном здании. Аналогично, КЗ может быть совмещена с КЭ, если они расположены на одном этаже. Если плотность рабочих мест на этаже или его части мала, то в качестве исключения допускается их подключение к КЭ горизонтальных кабелей смежных этажей.