
- •Содержание
- •Введение
- •1. Аналитический обзор
- •1.1. Система сигнализации и обслуживания аппаратуры икм
- •1.3. Вывод
- •2. Цифровые системы передачи информации
- •2.1. Принципы построения систем передачи
- •2.2. Структура первичного цифрового группового сигнала
- •2.3. Достоинства цифровых систем передачи
- •2.4. Иерархия цифровых систем передачи
- •3. Оборудование гибкого мультиплексирования огм-30е
- •3.1. Общее описание
- •3.2. Структура огм
- •3.3. Принцип работы огм
- •3.4. Описание конструктива
- •3.5. Шина st-bus
- •4. Сеть оборудования связи
- •4.1. Описание сети
- •4.2. Описание интерфейса
- •4.3. Взаимодействие рс с сетью
- •4.4. Плата кс-120
- •4.4.1. Назначение
- •4.4.2. Технические данные
- •4.4.3. Описание платы
- •4.4.4. Интерфейс q2
- •4.5. Описание программы
- •4.5.1. Общие сведения
- •4.5.2. Система меню
- •5. Экономическое обоснование проекта
- •5.1. Ситуация на рынке средств связи
- •5.2. Экономические расчёты
- •5.2.1. Расчёт затрат на написание программы
- •5.2.2. Расчёт цены одного экземпляра программы
- •5.2.3. Расчёт экономической эффективности
- •5.3. Выводы
- •6. Охрана труда
- •6.1. Организация рабочего места оператора эвм
- •6.1.1. Оборудование рабочего места оператора эвм
- •6.1.2. Вредные факторы в работе
- •6.1.4. Расчёт освещённости рабочего места
- •6.2. Противопожарная защита
- •Заключение
- •Список использованных источников
4. Сеть оборудования связи
4.1. Описание сети
Адресное пространство сети оборудования связи Morion-Q2 составляет 128 адресов сетевых элементов (СЭ). Это связано с тем, что под адрес СЭ выделен 1 байт, но старший бит не используется.
Адрес 0 используется при отладке. Адрес 1 назначен ведущему СЭ сети, и используется при обмене информацией между ведущим СЭ и остальными элементами сети. То есть, если в сообщении указан адрес 1, то это ответ одного из ведомых СЭ ведущему. У ведущего СЭ есть также другой адрес, как и у любого другого СЭ. Ведущим становится тот СЭ, к которому подключен РС (если в сети уже есть один РС, то новый игнорируется). Адрес 255 используется для передачи команды всем блокам одновременно. Он может использоваться, например, для синхронизации работы СЭ (установка времени).
Структура сети Morion-Q2 приведена на рис. 4.1. При объединении в сеть более 32 СЭ, необходимо на каждые 32 СЭ добавлять по одному репитеру (из-за ослабления сигнала).
Рис. 4.1. Структура сети оборудования связи Morion-Q2.
4.2. Описание интерфейса
Взаимодействие PC с ведущим СЭ осуществляется по интерфейсу F. На физическом уровне интерфейса F используется интерфейс RS-232C, на уровне звена передачи данных - BiSync.
Физический уровень [12] - это та часть модели OSI ISO, которая определяет физические и электрические характеристики соединений, которые образуют сеть (витые пары, оптические кабели, разъёмы, повторители и т.д.). Можно назвать его аппаратным уровнем.
На уровне звена передачи данных рассматривается прохождение по сетевому кабелю электрических импульсов. На этом этапе обнаруживаются и исправляются ошибки передачи (запрашивая повторные передачи искажённого пакета).
При передаче двоичных данных по линии связи все двоичные разряды передаваемых элементов должны быть преобразованы в физические электрические сигналы [10].
Интерфейсы RS-232C (разработанный американской Ассоциацией производителей элетротехники) V.24 (разработанный МККТТ) были первоначально созданы в качестве стандартного интерфейса для соединения оконечного оборудования данных (ООД) с модемами. Однако позже эти интерфейсы были приняты в качестве стандартов на соединение любого символьного устройства (видеодисплея, принтера и т.д.) с компьютерами.
Рис. 4.2. Интерфейсы RS-232C/V.24
Как видно из рис. 4.2., напряжения сигналов в линии симметричны по отношению к уровню земли и составляют не менее +3 В для двоичного нуля, и -3 В для двоичной единицы. На практике используются напряжения 12 или даже 15 В (по стандарту передатчик не должен ни при каких обстоятельствах выдавать напряжение более 25 В. Приёмник же должен выдерживать это напряжение на входе). Схемы передачи преобразуют низкие уровни сигналов аппаратуры в более высокие, применяемые в линиях передачи. Приёмные схемы выполняют обратное преобразование. Схемы согласования интерфейса также выполняют необходимые преобразования напряжений.
Использование как положительных, так и отрицательных напряжений повышает помехоустойчивость системы [11]. Все уровни напряжений в этом интерфейсе измеряются относительно общего провода, называемого «землёй» сигналов или сигнальной «землёй» (signal ground).
Стандарт RS-232C [13] описывает несимметричный интерфейс, работающий в режиме последовательного обмена синхронного либо асинхронного. В этом стандарте определена максимально допустимая физическая удалённость, не более 15 м, и скорость передачи, до 20000 бит/с.
Стандарт RS-232C эквивалентен:
- по описанию цепей обмена - рекомендации V.24 МККТТ;
- по характеристикам электрического сигнала - рекомендации V.28 МККТТ;
- по механическим характеристикам - описанию 25-контактного интерфейсного разъёма между ООД-АПД и обозначениям контактов стандарта ISO 2110.
Структура кадра BiSync представлена на рис. 4.3.
Рис 4.3. Структура кадра BiSync.
Syn - синхробайт. Два синхробайта предназначены для обнаружения начала кадра;
A - адрес ведущего СЭ;
L - длина поля Data в байтах;
R - резервный байт;
CRC1H, CRC1L - старший и младший байты контрольной суммы 1 (КС1). КС1 вычисляется для заголовка без Syn-ов.
Рис. 4.4. Блок-схема подпрограммы вычисления КС.
Data - поле данных. В этом поле передаётся HDLC-кадр без контрольной суммы;
CRC2H, CRC2L - старший и младший байты контрольной суммы 2 (КС2). КС2 вычисляется для поля данных.
Для вычисления КС1 и КС2 используется полином g(x)=X15+X2+1.
Блок-схема подпрограммы вычисления контрольной суммы представлена на рис. 4.4. Входные данные - SText - строка, для которой надо вычислить контрольную сумму. Polinom=8005h=10000000 00000101b.