
- •Схемотехника
- •Аналоговых
- •Электронных
- •Устройств
- •Лекция №1 Введение в дисциплину «Схемотехника аналоговых электронных устройств»
- •1.1. Общие сведения об аналоговых электронных устройствах
- •1.2.Программа дисциплины
- •1.3.Балльно-рейтинговая система оценки знаний.
- •1.4.Рекомендуемая литература.
- •Качественные показатели и характеристики аналоговых электронных устройств.
- •2.1. Основные определения
- •2.2. Входные и выходные показатели.
- •Коэффициент усиления.
- •2.4. Амплитудно-частотная характеристика.
- •2.5.Фазовая характеристика.
- •2.6. Амплитудная характеристика.
- •2.7. Нелинейные искажения.
- •2.8. Переходная характеристика.
- •Лекция №3 Основы построения электронных усилителей
- •3.1. Принципы построения усилительных устройств.
- •3.2. Построение усилительного каскада на электронной лампе.
- •3.3. Построение усилительных каскадов на полевых транзисторах.
- •3.4. Работа электронной лампы и полевого транзистора в схеме аэу.
- •3.5. Особенности построения усилительных каскадов на биполярных транзисторах.
- •3.6. Работа биполярного транзистора в усилительном каскаде.
- •3.7. Схемы межкаскадной связи.
- •Лекция №4 Обеспечение и стабилизация режима работы усилительного элемента по постоянному току.
- •4.1. Режим работы усилительного элемента.
- •4.2. Цепи подачи смещения.
- •4.3. Стабилизация рабочей точки биполярных транзисторов.
- •Лекция №5 Предварительные усилители напряжения
- •5.1. Общие сведения о предварительных усилителях.
- •5.2. Принципиальные схемы предварительных усилителей.
- •5.3. Эквивалентная схема усилителя.
- •5.4. Методика анализа резисторного каскада предварительного усилителя.
- •Лекция №6 Анализ каскада предварительного усиления.
- •6.1. Анализ резисторного каскада в области средних частот.
- •6.2. Анализ резисторного усилителя на высоких частотах.
- •6.3. Анализ резисторного каскада в области нижних частот.
- •Лекция №7 Импульсные и широкополосные усилители.
- •7.1. Общие сведения и принципы построения импульсных усилителей.
- •7.2. Анализ импульсного усилителя в области малых времен
- •7.3. Анализ импульсного усилителя в области больших времен
- •Лекция №8 Цепи коррекций в импульсных и широкополосных усилителях
- •8.1. Назначение корректирующих цепей
- •8.2. Простая индуктивная высокочастотная коррекция
- •8.3. Эмиттерная высокочастотная коррекция
- •8.4. Низкочастотная коррекция
- •Лекция №9 Выходные каскады усилителей
- •9.1. Общие сведения о выходных каскадах
- •9.2. Способы построения однотактных выходных каскадов
- •9.3. Эквивалентная схема трансформаторного каскада
- •9.4. Выходные динамические характеристики
- •9.5. Построение вдх для каскада с емкостной связью
- •9.6. Построение вдх для трансформаторного каскада
- •9.7. Анализ однотактного выходного каскада в режиме а
- •9.8. Анализ однотактного трансформаторного усилителя мощности в режиме а.
- •Лекция №10 Двухтактные выходные каскады
- •10.1. Резисторные двухтактные усилители напряжения
- •10.2. Двухтактный трансформаторный усилитель мощности
- •10.3. Работа двухтактного каскада в режиме в.
- •10.4. Анализ двухтактного трансформатора усилителя мощности
- •10.5. Фазоинверсные схемы
- •Лекция №11 Бестрансформаторные двухтактные усилители мощности
- •11.1 Общие сведения
- •11.2. Принцип построения бестрансформаторного усилителя мощности
- •11.3. Бестрансформаторный усилитель мощности с дополнительной симметрией
- •11.4. Бестрансформаторный усилитель мощности на составных транзисторах
- •Лекция №12 Курсовое проектирование
- •12.1. Цель курсового проектирования
- •12.2 Содержание и тематика проекта
- •12.3. Правила выполнения и оформления курсового проекта
- •12.4. Организация работ и последовательность проектирования
- •Лекция №13 Обратная связь в аналоговых электронных устройствах
- •13.1. Классификация видов обратной связи
- •13.2. Влияние обратной связи на качественные показатели аэу
- •13.3. Влияние оос на входное и выходное сопротивления.
- •13.4. Влияние оос на амплитудно-частотную характеристику
- •Лекция №14 Усилительные каскады с различными видами обратной связи
- •14.1. Усилительные каскады с последовательной оос по току
- •14.2. Влияние элементов автоматического смещения и эммитерной стабилизации на ачх
- •14.4 Усилительный каскад с паралелльной оос по напряжению
- •14.5. Усилитель с глубокой обратной связью
- •14.6. Истоковые и эмиттерные повторители
- •Лекция №15 Усилители постоянного тока
- •15.1. Назначение и особенности построения
- •15.2. Упт с непосредственной связью
- •15.3. Схемы сдвига уровня постоянного напряжения
- •15.4. Дрейф нуля и способы его уменьшения
- •15.5. Балансные усилители постоянного тока
- •Лекция №16 Специальные каскады упт
- •16.1. Дифференциальные усилители
- •16.2. Усилители постоянного тока с преобразованиями сигнала
- •16.3. Упт с использованием оптрона
- •Лекция №17 Аналоговые электронные устройства на интегральных микросхемах
- •17.1. Общие сведения об интегральных микросхемах
- •17.2. Особенности интегральной схемотехники
- •17.3. Усилители низкой частоты на интегральных микросхемах.
- •17.4. Усилитель мощности на интегральных микросхемах
- •Лекция №18 Операционные усилители
- •18.1. Общие сведения об операционных усилителях
- •18.2. Принципиальные схемы операционных усилителей
- •18.3. Свойства и характеристики оу
- •18.3.1. Входные и выходные параметры оу
- •18.3.2. Усилительные параметры и характеристики
- •Лекция №19 Амплитудно-частотная характеристика операционного усилителя. Коррекция оу
- •19.1. Диаграмма Боде
- •19.2. Обеспечение устойчивости оу
- •19.3. Коррекция частотной характеристики оу
- •Лекция №20 Применение оу в устройствах аналоговой обработки сигналов
- •20.1. Неинвертирующий усилитель
- •20.2. Суммирующее устройство
- •20. 3. Повторитель напряжения
- •20.4. Инвертирующий усилитель
- •20.5. Вычитающее устройство
- •20.6. Интегрирующее устройство
- •20.7. Дифференцирующее устройство
- •20.8. Логарифмирующее устройство
- •Лекция №21 Активные фильтры
- •21.1. Общие сведения об активных фильтрах
- •21.2. Пассивные rс – фильтры
- •21.3. Реализация активных фильтров
- •21.4. Активные фильтры высокого порядка
- •21.5. Полосовые и заграждающие аф
- •21.6. Общие сведения о регулировках тембра
- •21.7 Принцип регулировки тембра на основе аф
- •21.8. Регулятор тембра на основе аф
- •Лекция №22 Регулировка усиления
- •22.1. Общие сведения о регулировках усиления
- •22.2. Регулировка усиления изменением входного сигнала
- •22.3. Тонкомпенсирующие регуляторы усиления
- •22.4. Регулировка усиления изминением режима работы усилительного элемента
- •22.5. Регулировка изменением глубины обратной связи.
- •При перемещении движка потенциометра меняется номинал резистора Rос, следовательно, меняется коэффициент передачи обратной связи и коэффициент усиления данного усилителя. Лекция №23 Внутренние шумы
- •23.1. Общие сведения о внутренних шумах
- •23.3. Шумы электрических цепей
- •23.4. Шумы электронных ламп
- •23.5. Внутренние шумы полупроводниковых приборов
4.3. Стабилизация рабочей точки биполярных транзисторов.
Как
известно, все параметры биполярного
транзистора имеют сильную температурную
зависимости. Если не предусмотреть
специальные схемы стабилизации, то
рабочая точка в зависимости от температуры
будет передвигаться, что может привести
к выходу ее за пределы рабочей области
характеристики. Так, например, обратный
ток коллектора в сильной степени зависит
от окружающей температуры:,
где А - коэффициент, зависящий от технологии производства транзистора.
При
увеличении температуры на 10С
увеличивается в два раза. Такое явление
вызывает изменение коллекторного тока
и режима работы. Изменение
также может быть вызвано изменением
коэффициента усиления и изменением
питающих напряжений во времени. Широкое
применение находят коллекторная и
эмиттерная схемы стабилизации режимов
работы транзисторов. Надо отметить, что
все схемы стабилизации реализованы с
использованием отрицательной обратной
связи по постоянному току. В схеме
коллекторной стабилизации (рис.4.3., а)
ток смещения
зависит от потенциала коллектораUк0,
который определяется Uк0=Е-IкRн.
Если увеличится
,
то уменьшается ток смешенияIб0=(Е-IкRн)/R1,
что приводит к снижению
.
Процесс автоматического управления
при уменьшении тока коллектора происходит
обратным образом. Принцип действия
коллекторной стабилизации основан
на применении отрицательной обратной
связи по напряжению.
Коллекторная стабилизация в случае подачи смещения с помощью делителя объясняется следующим образом: Iд= (Е-IкRн)/(R1 + R2); Uсм= Iд R2
Рис.4.3. Схемы коллекторной стабилизации рабочей точки.
При повышении температуры увеличивается ток коллектора, следовательно, возрастает падение напряжения на сопротивлении нагрузки, вследствие чего уменьшается потенциал коллектора. Это приводит к уменьшению напряжения смещения, следовательно, к уменьшению тока коллектора.
Более высокую стабильность рабочей точки обеспечивает наиболее распространенная схема эмиттерной стабилизации (рис. 4.4.).
Напряжение
смещения в этой схеме равняется
.
Принцип действия эмиттерной стабилизации
состоит в следующем. Допустим, за
счет повышения температуры в схеме
возрастают токи
и
.
При этом растет падение напряжения на
,
что уменьшает напряжение смещения.
Снижение напряжения смещения, в свою
очередь, ведет к уменьшению токов
и
.
Чтобы исключить обратную связь по
переменной составляющей, необходимо
зашунтировать
большой емкостью
.
Рис.4.4. Схема эмиттерной стабилизации рабочей точки
Стабильность рабочей точки повышается при использовании схемы комбинированной стабилизации (рис.4.5), в которой объединены оба рассмотренных способа. Коллекторная стабилизация рабочей точки в этой схеме обеспечивается за счет включения в цепь коллектора элементов развязывающего фильтра. При увеличении температуры увеличивается Iк и падение напряжения IкRф. Вследствие чего уменьшается потенциал точки 1, что приводит к уменьшению напряжения смещения. Следовательно, уменьшается ток коллектора, т.е. происходит стабилизация режима работы транзистора.
Рис.4.5. Схема комбинированной стабилизации рабочей точки.
Когда требуется уменьшить нестабильность тока покоя, вызываемую лишь изменением температуры, используются схемы температурной стабилизации (рис.4.6).
Рис.4.6. Схемы температурной стабилизации:
а – с помощью терморезистора; б – с помощью диода.
В принципиальной схеме усилителя с температурной стабилизацией, приведенной на рис. 4.6.а, в нижнем плече делителя устанавливается терморезистор с отрицательным температурным коэффициентом. При повышении температуры его сопротивление падает, следовательно, уменьшается напряжение смещения, что вызывает уменьшение токов коллектора и эмиттера.
Температурная
стабилизация может быть осуществлена
с помощью полупроводниковых диодов
(рис.4.6.б). С повышением температуры
возрастает обратный ток диода,
следовательно, возрастает напряжение
на сопротивлении
и уменьшается напряжение смещения,
компенсируя возрастания обратного тока
транзистора.