
- •Гидроэлектроста
- •Содержание
- •На ГЭС для получения электроэнергии используется энергия
- •Принцип работы ГЭС
- •Условия
- •Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в
- •При сооружении ГЭС, одновременно с энергетическими, решаются важные задачи: орошение земель и развитие
- •При проектировании зданий русловых и приплотинных ГЭС необходимо рассматривать не совмещенные и совмещенные
- •При проектировании водовыпускных сооружений насосных станций следует предусматривать плавный выпуск воды в канал
- •Классификация
- •Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности: мощные — вырабатывают от 25
- •Мощность ГЭС напрямую зависит от напора воды, а также от КПД используемого генератора.
- •Гидроэлектростанции также делятся в зависимости от максимального использования напора воды:высоконапорные — более 60
- •В зависимости от напора воды, в гидроэлектростанциях применяются различные виды турбин. Для высоконапорных
- •Принцип работы всех видов турбин схож — вода, находящаяся под давлением (напор воды)
- •По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые,
- •плотинные ГЭС. Строятся при более высоких напорах воды. В этом случае река полностью
- •деривационные гидроэлектростанции.
- •В русловых и приплотинных ГЭС напор воды создаётся плотиной, перегораживающей реку и поднимающей
- •гидроаккумулирующие электростанции. Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход
- •Деривационные
- •В деривационных ГЭС концентрация падения реки создается посредством деривации: вода в начале используемого
- •Бьеф (фр. bief) — часть реки, канала, водохранилища или другого водного объекта, примыкающего
- •Деривация
- •Деривационные гидроэлектростанции.
- •Деривационные ГЭС принято разделять на три основных
- •Типы деривационных
- •Общие требования к деривационным водоводам
- •Безнапорные деривационные ГЭС
- •Компоновочная схема водозаборного сооружения для малой ГЭС:
- •Дополнительными сооружениями на ГЭС с безнапорной деривацией являются отстойники и бассейны суточного регулирования,
- •ГЭС с напорной
- •ГЭС с напорной
- •В состав сооружений ГЭС этого типа входят: плотина, водозаборный узел, деривация с напорным
- •Схема станционного узла деривационной ГЭС:
- •Схемы напорных
- •И для сравнения схема
- •Формы поперечного
- •сечений
- •Обделки туннелей
- •Типы несущих обделок напорных деривационных туннелей: I— монолитная бетонная; II — монолитная железобетонная;
- •Оборудование
- •Стальные
- •Железобетонные
- •Выбор трассы
- •Сооружения на
- •Турбинный трубопровод и Аушигерская ГЭС. В составе сооружений Аушигерской ГЭС так же присутствует
- •Машинные залы Аушигерской ГЭС
- •Русловые и приплотинные ГЭС
- •Принцип работы ГЭС
- •Саратовская ГЭС.
- •В русловых и приплотинных ГЭС напор воды создаётся плотиной, перегораживающей реку и поднимающей
- •В состав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и водосбросные сооружения
- •Приплотинной называется гидроэлектрическая станция, напор которой создаётся посредством плотины, а машинный зал и
- •энергии водотока возможно при концентрации перепадов уровней воды на сравнительно коротком участке. При
- ••Приплотинные компоновки характерны для средне- и высоконапорных ГЭС, расположенных на крупных реках. Как
- •Братская ГЭС
- •Илимская
- •Недостатком такой ГЭС является то, что она не может- быть построена на многоводной
- •Схема Приплотинной ГЭС
- •Гидроаккумулирующие
- •Гидроаккумулирующая электростанция — гидроэлектрическая станция с комплексом сооружений и оборудования, предназначенная для преобразования
- •Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты
- •Гидроаккумулирующие электростанции работают в двух режимах — насосном и турбинном. В первом
- •В состав гидроаккумулирующей электростанции входят: нижн. питающее водохранилище (естеств. озеро, водохранилище гидроузла, существующее
- •Схема гидроаккумулирующей электростанции:
- •Гидромеханическое и электротехническое оборудование в здании гидроаккумулирующей электростанции располагается обычно по схеме
- •Обратимые гидромашины (насосотурбины).
- •Разрез по насосотурбине Загорской ГАЭС: 1 – рабочее колесо; 2 – лопатки направляющего
- •Обратимые гидромашины могут выполняться, как и реактивные гидротурбины, осевыми, диагональными и радиально-осевыми. Область
- •Крупные современные обратимые гидромашины производят фирмы «Voith Siemens»,
- •Если верхний бассейн не имеет естественной приточности, станция работает только на аккумулированной воде
- •Гидроаккумулирующие электростанции обычно располагают вблизи крупных потребителей энергии и в районе мощных электростанций
- •Кпд от 0,6 до 0,7. Наиболее благоприятные гидрологические условия для строительства гидроаккумулирующей станции—
- •ГАЭС России и бывшего СССР
- •Богучанская ГАЭС
- •Кубанская ГАЭС
- •Днестровская ГАЭС
- •Загорская гидроаккумулирующая
- •Вид с козлового крана, который открывает/закрывает затворы верхнего бассейна.
- •Верхний бассейн Загорской ГАЭС искусственный и сделан за счет дамбы.
- •Несмотря на то, что КПД станции около 75% (по сути она является убыточной
- •В часы, когда в энергосистеме избыток электрической энергии (преимущественно ночью), гидроагрегаты ГАЭС работают
- •Длина водоводов — 800 м, диаметр 7,5 м.
- •В 100 метрах от станции ведется строительство ГАЭС 2.
- •Армакаркасы будущего водовода — круглые металлические кольца, длинной 8 метров и весом более
- •Монтаж напорного водовода — одна из самых масштабных и трудоемких частей строительства ГАЭС.
- •Статор насос-турбинной установки 1 гидроагрегата.
- •Авария на Загорской ГАЭС- 2
- •В ночь с 17 на 18 сентября с.г. в результате просадки плиты фундамента
- •Плотины
- •СОСТАВ ОБОРУДУВАНИЯ
- •Назначение плотины
- •Водохозяйственное
- •Материал для строительства плотины
- •Требования, предъявляемые к Г. б., зависят от расположения и условий работы гидротехнических сооружений
- •Отличительные признаки
- •Типы плотин
- •Схемы самых распространенных плотин
- •Гравитационная плотина
- •Гравитационная плотина — весьма распространённый тип плотин, применяемый как на скальных (Бухтарминская, Красноярская
- •Гравитационная бетонная плотина Красноярской ГЭС
- •Схема и вид гравитационной плотины
- •а — глухая плотина, б — водосливная плотина; 1 — гребень; 2 —
- •Арочная плотина
- •Современные тенденции в конструировании А. п.: снижение толщины плотины и повышение напряжений в
- •Схема и вид арочной плотины
- •Контрфорсная плотина
- •Контрфорсная плотина —
- •По типу напорного перекрытия различают К. п.:
- •Заанкеренные плотины сопротивляются сдвигу в значительной мере благодаря заделке конструкции в основание при
- •Плотина ГЭС Монтичелло
- •Низконапорная водосливная плотина
- •Типы
- •Гидроэнергетика, использование энергии естественного движения, т.е. течения, водных масс в русловых водотоках и
- •Водяная турбина И. Е. Сафонова стала
- •По принципу действия гидротурбины делятся на
- •Активная
- •Схема реактивной гидротурбины А-рабочее колесо Б-направляющий аппарат
- •Класс реактивных турбин объединяет следующие
- •Радиально-осевые турбины
- •Турбина Фрэнсиса (турбина радиального потока)
- •и на небольших напорах, что сейчас не практикуется. Например, турбины этого типа установлены
- •Радиально-осевые турбины являются самым
- •использоваться на напорах до 700 м. Однако, на небольших напорах радиально-осевые турбины приходится
- •В зависимости от конкретных условий, форма радиально-осевых рабочих колес может заметно отличаться:
- •1-рабочее колесо ;2-радиально- осевая турбина
- •РАДИАЛЬНО-ОСЕВАЯ ГИДРОТУРБИНА С ГИДРОГЕНЕРАТОРОМ. Напор воды
- •На небольших ГЭС радиально-осевые турбины часто устанавливают не вертикально, а горизонтально, что упрощает
- •Раньше, с целью увеличения мощности турбины, нередко применялось объединение двух рабочих колес на
- •Крупнейшие в мире радиально-осевые турбины (как и гидравлические турбины вообще) установлены на американской
- •Примерно такую же (и даже чуть большую — 812 МВт) мощность имеют и
- •Особая история — обратимые радиально- осевые насос-турбины, которые устанавливаются на гидроаккумулирующих электростанциях (ГАЭС).
- •ГИДРОТУРБИНЫ / HYDROTURBINES
- •Диагональные турбины
- •Диагональная гидротурбина
- •Диагональные ПЛГ
- •Диагональные ПЛГ
- •Рабочее колесо диагональной гидротурбины
- •Сравнительные характеристики диагональных и радиально-осевых гидротурбин:
- •Ковшовые
- •Ковшовая гидротурбина(турбина Пелтона)
- •Турбины Пелтона является турбиной реактивного типа, где рабочее колесо турбины полностью погружено в
- •Вода подводится к рабочему колесу в и поток воды. Во время поступления воды
- •Первая турбина Пелтона была установлена в 1878 году и использовалась для прямого привода
- •Конструктивно, ковшовая турбина является т.н. активной турбиной. Ее рабочее колесо не находится в
- •Как уже было сказано, рабочее колесо турбины приводится в действие струями воды. Эти
- •Рабочее
- •Внутри каждого ковша расположен нож, разделяющий поток воды на две части.
- •Наиболее
- •Крупнейшие в мире ковшовые гидротурбины (максимальная мощность — 449 МВт) установлены на швейцарской
- •Устанавливают ковшовые турбины и на гидроаккумулирующие электростанции (ГАЭС), построенные по трех- или четырехмашинной
- •Впрочем, в скором будущем в России появится Весьма крупная ГЭС с турбинами этого
- •В отличие от реактивных гидротурбин, Ковшовая гидротурбина не требуют отсасывающей трубы, а вода
- •Принцип работы старого водяного колеса реализован в современной турбине Пелтона. Турбина Пелтона используется
- •Ребро разделителя делит струю пополам, образуя два потока, отклоняющиеся друг от друга. Наибольшие
- •Принципиальная схема ковшовой турбины
- •Различные подводы воды к горизонтальной ковшовой турбине: а — двухколесной;
- •Ковшовая гидротурбина
- •Турбина Каплана (поворотно-лопастная)
- •Турбина Каплана (поворотно-лопастная)
- •а - радиально-осевой; б - пропеллерной; в - поворотно-лопастной; г - двухперовой поворотно-лопастной;
- •Регулирование
- •Регулирование
- •Поворотно-лопастные турбины наиболее эффективны при относительно небольших напорах – от 10 до 40
- •Опытная горизонтальная поворотно- лопастная гидротурбина мощностью
- •Виды ПЛГ
- •Вертикальные ПЛГ
- •Вертикальные ПЛГ
- •По своим прочностным и противокавитационны м свойствам Поворотно-лопастная гидротурбина уступает радиально-осевой гидротурбине, что
- •В турбине Каплана вода течёт сквозь винт пропеллер и заставляет его вращаться. В
- •Схема узловой
- •Турбины на Иркутской ГЭС
- •Монтажники
- •Турбины на волжской ГЭС
- •Волновая
- •Энее́ргия волн океана — энергия, переносимая волнами на поверхности океана. Может использоваться для
- •Волновая
- •Принцип действия волновых электростанций
- •Одно из устройств первой группы представляет собой вертикальную трубу, погруженную нижним открытым концом
- •Преобразователи,
- •Уже известны по крайней мере два примера коммерческого использования устройств на этом принципе
- •Схема установки, в которой используется принцип колеблющегося водного столба (разработана Национальной инженерной лабораторией
- •Пневмобуй Масуды: 1- корпус; 2 - электрогенератор;
- •Главное преимущество устройств на принципе водяного колеблющегося столба состоит в том, что скорость
- •Преобразователи, отслеживающие профиль волны
- •Разработка профессора Эдинбургского университета Стефана Солтера, известная под названием "утка Солтера", представляет собой
- •Эффективность «утки Солтера» (диаметр 15 м, ось зафиксирована)
- •Наиболее серьезными недостатками для «уток Солтера» оказались следующие:
- •Другой вариант волнового преобразователя с качающимся элементом -
- •Пилотный проект волновой электростанции компания Ocean Power Delivery реализовала в Европейском морском энергетическом
- •Сейчас идет подготовка к реализации второй фазы проекта Pelamis в Португалии. Это строительство
- •Концентрация волн в
- •Волновая электростанция Oceanlinx.
- •Подводные устройства
- •"Архимедово волновое качание" (Archimedes Wave Swing — AWS), по словам авторов разработки, самую
- •Собственно сама AWS представляет собой цилиндр диаметром 12 и высотой 30 метров. Весит
- •В то же время система AWS, сделанная из тех же материалов, что и
- •Стоит одна такая "бочка" порядка 4 миллионов евро и рассчитана на беспрерывную работу
- •Использование энергии океанских течений
- •Достоинства океанских течений в качестве источников энергии по сравнению с ветровыми потоками:
- •Для характеристики схем установки преобразователей можно выделить две основные схемы – сооружений, закрепляемых
- •Преобразование тепловой энергии океана и приливные электростанции
- •Мировой океан – крупнейший
- •Мировой океан.
- •Преобразование тепловой энергии океана
- •ОТЭС.
- •Принцип действия.
- •Для определения реализуемых запасов тепловой энергии необходимы сведения о распределении температур на поверхности
- •Распределение перепадов температур в приэкваториальных зонах
- •Тропические районы Мирового океана, где существует устойчивая разница между температурой приповерхностных и глубинных
- •Более точные оценки требуют знания картины распределения температур. Карты показывают, что площадь зоны
- •Последние десятилетия характеризуется
- •Пробная эксплуатация установки в течение трех с половиной месяцев показала ее достаточную надежность.
- •Миниустановка ОТЭС, дающая «чистый» выход энергии.
- •Рабочие тела и оборудование ОТЭС.
- •Полупогруженная платформа в виде
- •по замкнутому циклу Ренкина.
- •В такой системе с помощью теплых поверхностных вод, прокачиваемых насосом через теплообменник испарителя,
- •Термодинамический цикл ОТЭС (цикл Ренкина).
- •по открытому циклу
- •В качестве рабочего тела здесь использована морская вода, подаваемая в испаритель через деаэратор,
- •АККУМУЛИРОВАННАЯ ТЕПЛОВАЯ ЭНЕРГИЯ
- •Тепловая схема АОТЭС с промежуточным контуром охлаждения, работающая по замкнутому циклу раб. тело
- •В такой схеме используется дополнительный контур с промежуточным теплоносителем, который позволяет снизить потери
- •С целью интенсификаций процесса охлаждения конденсатора предусмотрен промежуточный теплоноситель (раствор хлорида натрия NаСl;).
- •Прямое преобразование тепловой энергии.
- •Схема ОТЭС на
- •Преимущества ОТЭС
- •Недостатки ОТЭС
- •Выводы.
- •Разновидностью описанного способа утилизации тепловой энергии океана является метод, основанный на использовании разности
- •Приливная энергетика
- •Генератор и турбина заключены в обтекаемую капсулу, которая очень удобна в использовании. Главным
- •Принцип явления прилива
- •Использовать энергию приливов можно на
- •Приливные
- •Первая в мире ПЭС построена в 1966 году во Франции на реке Ранс.
- •Принцип работы ПЭС
- •Хорошим местом для постройки приливной электростанции является узкий морской залив, который отсекается плотиной
- •При одном бассейне и правильном полусуточном цикле приливов ПЭС может вырабатывать электроэнергию непрерывно
- •Однобассейновая ПЭС двухстороннего действия:
- •Схема ПЭС.
- •Основными типами турбин для ПЭС являются капсульные гидротурбины, которые способны работать как в
- •Расчет энергии для плотинных приливных электростанций
- •В 1968 г. на побережье Баренцева моря в Кислой губе сооружена первая в
- •В 1994 году, в связи со сложной экономической ситуацией, ПЭС была законсервирована; В
- •Кислогубская ПЭС.
- •В России выполнены проекты Тугурской ПЭС мощностью 8,0 ГВт и Пенжинской ПЭС мощностью
- •Тугурская ПЭС.
- •Пенжинская ПЭС.
- •Мезенская ПЭС.
- •Перспективные площадки для ПЭС
- •Характеристика приливной энергии и приливных электростанций в России.
- •В 1966 году на реке Ранс во
- •Приливная электростанция на реке Ла Ранс.
- •Электростанция на реке Ла Ранс мощностью 240 МВт имеет турбины, которые могут также
- •Крупнейшая в мире на настоящий момент Приливная электростанция, расположенная в искусственном заливе Сихва-Хо
- •Южнокорейская
- •Водохранилище/-Дамба[4]
- •Южнокорейская турбина.
- •· Лумбовской в Баренцевом море, мощностью 320 МВт и в другом варианте 672
- •безопасность
- •- Снижение солености воды в бассейне ПЭС, определяющее экологическое состояние морской фауны и
- •Преимущества ПЭС
- •Недостатки ПЭС
- •Спасибо за

Сейчас идет подготовка к реализации второй фазы проекта Pelamis в Португалии. Это строительство электростанции мощностью 22,5 МВт, которой будет достаточно для электроснабжения 15 000 домов. Она сможет спасти атмосферу планеты от выброса 60 000 тонн CO2. Станция займет около одного квадратного километра площади океана.
В перспективе человечество может обеспечить все прибрежные города энергией волн!
Что же представляет собой конвертер волновой энергии Pelamis? Это длинный (120 метров), круглый в сечении цилиндр диаметром 3,5 метра, состоящий из трех модулей, соединенных подвижной связью. В каждом модуле установлен электрогидравлический генератор мощностью 250 кВт, специально разработанный компанией ABB.

Концентрация волн в
сходящемся канале
Движение океанских волн сопровождается выделением фантастических объемов энергии. Однако человечество пока так и не научилось эффективно перерабатывать эту энергию для своих целей. Одна из успешнейших на данный момент попыток – волновая электростанция Oceanlinx в акватории города Порт-Кембла, Австралия.

Волновая электростанция Oceanlinx.
Основным элементом, определяющим эффективность работы волновой электростанции, является турбина. Из-за того, что направление движения волн и их сила постоянно меняются, обычные турбины для выработки волновой электроэнергии непригодны. Поэтому на станции Oceanlinx используется турбина Denniss-Auld c регулируемым углом поворота лопастей.
Одна силовая установка Oceanlinx обладает мощностью (в пиковом режиме) от 100 кВт до 1,5 МВт. Установка в Порт-Кембла поставляет в электросеть города 450 кВт электричества. Принцип работы волновой электростанции заключается в том, что проходящие через нее волны толчками заполняют водой специальную камеру, вытесняя содержащийся в этой камере воздух. Сжатый воздух под давлением проходит через турбину, вращая ее лопасти. В результате вырабатывается электричество


Подводные устройства
Преимущества подводных устройств состоят в том, что эти устройства позволяют избежать штормового воздействия на преобразователи.
Однако при их использовании увеличиваются трудности, связанные с извлечением энергии и обслуживанием.
Для примера можно рассмотреть преобразователь типа «бристольский цилиндр», относящийся к группе устройств, работающих под действием скоростного напора в волне.
Наполненный воздухом плавучий корпус (цилиндр), имеющий среднюю плотность 0,6-0,8 т/м3, закреплен под водой на опорах, установленных на грунте. Цилиндр колеблется в волне, совершая движение по эллиптической траектории и приводя в действие гидравлические насосы, вмонтированные в опоры и преобразующие энергию движения цилиндра.
Перекачиваемая ими жидкость может подаваться по трубопроводам на генераторную станцию, единую для нескольких цилиндров.
Одно из преимуществ идеи «бристольского цилиндра» то, что после настройки на оптимальную частоту он не отражает энергию других частот, а дает ей возможность распространяться далее, где ее могут поглотить другие преобразователи, например цилиндры с другой частотой.

"Архимедово волновое качание" (Archimedes Wave Swing — AWS), по словам авторов разработки, самую мощную и производительную волновую электростанцию: 150 мегаватт на квадратный километр.
Принципиальное отличие AWS от всех остальных проектов в этой области в том, что они… невидимы и никому не мешают. Потому как находятся под водой на глубине порядка 40-50 метров. Причём от верхушки сооружения до поверхности будет оставаться примерно 6 метров, что одинаково хорошо как с эстетической, так и с практической точки зрения.
Ну, с эстетической-то понятно (лицезреть AWS в действии смогут разве что дайверы). А что с практической? Дело в том, что большинство проектов волновых и приливных электростанций работает на поверхности воды или даже на побережье, что, несомненно, мешает передвижению судов, да и самим устройствам вредит – любое сильное волнение или, что ещё хуже, шторм быстро выводят механизмы из строя.
Пилотный проект из пяти "бочек" был запущен в октябре 2004 года у берегов Португалии и в течение двух недель прошёл все испытания весьма успешно.

Собственно сама AWS представляет собой цилиндр диаметром 12 и высотой 30 метров. Весит такой гигантский буй примерно 800 тонн и способен вырабатывать энергию для 500 домов, то есть выдаёт до 12 гигаватт-часов в год. Соответственно, рассчитанная стоимость одного киловатт-часа по нынешнему курсу порядка - 13 российских рублей. Дороговато, но авторы системы говорят, что с её масштабированием цена киловатта будет снижаться.
Цилиндр пустотелый, а его внутренность заполнена газом. Нижняя часть цилиндра крепится ко дну, верхняя же находится в "свободном плавании", то есть может двигаться вверх-вниз относительно нижней части. Принцип действия прост как всё гениальное: проходящая над буйком волна "давит" на верхнюю часть цилиндра, заставляя её проседать под своей тяжестью, а газ внутри — сжиматься. Как только волна уходит, давление понижается, и верхняя часть цилиндра поднимается обратно.
Такое механическое движение вверх-вниз преобразуется в электричество с помощью линейного генератора (обычных катушки и магнита), по тому же принципу, что и в этом проекте.
Электрический ток в основную сеть на побережье пересылается по электрическим кабелям, проложенным от каждой AWS по дну

В то же время система AWS, сделанная из тех же материалов, что и подводные части нефтяных вышек, находится в глубоких, спокойных водах.
Другие плюсы этого проекта: дешевизна оборудования, большее количество производимой энергии на той же площади (в сравнение с другими источниками природной энергии), безопасность для окружающей среды, простота монтажа и обслуживания.

Стоит одна такая "бочка" порядка 4 миллионов евро и рассчитана на беспрерывную работу в течение восьми лет.
Конечно, построить ферму из нескольких AWS, которая бы качественно и, главное, бесперебойно снабжала город (или даже города) энергией можно не везде.
Наиболее подходящими считаются западное побережье Великобритании, Португалии и Испании, тихоокеанское побережье Канады и США (от Ванкувера до Сан-Франциско), Чили и даже Южной Африки и Новой Зеландии — прежде всего за счёт того, что здесь волнение на море не затухает 24 часа в сутки.
К другим обязательным требованиям относится подходящий рельеф дна (глубины до 80-90 метров в местах, где проходят морские пути, и рельеф, позволяющий прокладывать кабели к побережью).
Кроме того, желательно, чтобы волновые "фермы" находились не далее чем в 12 часах плавания от ближайшего промышленного порта.
