15.6. Кора головного мозга
Кора головного мозга является высшим отделом центральной нервной системы, обеспечивающим на основе врожденных и приобретенных в онтогенезе функций наиболее совершенную организацию поведения организма.
Кора головного мозга имеет ряд морфофункциональных особенностей: 1) многослойность расположения нейронов; 2) модульный принцип организации; 3) соматотопическая локализация рецептор-ных систем; 4) экранность — распределение внешней рецепции на плоскости нейронального поля коркового конца анализатора; 5) зависимость уровня активности от влияния подкорковых структур и ретикулярной формации; 6) наличие представительства всех функций нижележащих структур центральной нервной системы; 7) цитоархи-тектоническое распределение на поля; 8) наличие в специфических проекционных сенсорных и моторной системах коры вторичных и третичных полей с превалированием ассоциативных функций; 9) наличие специализированных ассоциативных областей коры; 10) динамическая локализация функций, выражающаяся в возможности компенсаций функций утраченных структур коры; 11) перекрытие в коре зон соседних периферических рецептивных полей; 12) возможность длительного сохранения следов раздражения; 13) реципрокная
41
функциональная взаимосвязь возбудительных и тормозных состояний коры; 14) способность к иррадиации состояния; 15) наличие специфической электрической активности.
Особенности структурно-функциональной организации коры мозга связаны с тем, что в эволюции происходила кортиколизация функций центральной нервной системы, т.е. передача ей функций нижележащих структур мозга. Однако, эта передача не означает, что кора берет на себя выполнение функций других структур. Ее роль сводится к коррекции возможных нарушений функций взаимодействующих с ней систем, более совершенного, с учетом индивидуального опыта, анализа сигналов и организации оптимальной реакции на эти сигналы, формирование в своих и в других заинтересованных структурах мозга памятных следов о сигнале, его характеристиках, значении и характере реакции на него. В дальнейшем, по мере автоматизации реакция начинает выполняться подкорковыми структурами.
Общая площадь коры мозга человека около 2200 кв.см, количество нейронов коры — более 10 млрд. Значительное место в клеточном составе коры занимают пирамидные нейроны. Пирамидные нейроны имеют разную величину, их дендриты несут большое количество шипиков: аксон (как правило, идет через белое вещество в другие зоны коры или в другие структуры ЦНС); звездчатые клетки —имеют короткие дендриты и короткий аксон, обеспечивающий связи нейронов самой коры; веретенообразные нейроны — обеспечивают вертикальные или горизонтальные взаимосвязи нейронов.
Кора головного мозга имеет шестислойное строение. Верхний — молекулярный слой, представлен преимущественно восходящими дендритами пирамидных нейронов, сюда же подходят волокна неспецифических ядер таламуса, регулирующие через дендриты этого слоя уровень возбудимости коры. Второй слой — наружный зернистый, состоит из звездчатых клеток, определяющих длительность циркулирования возбуждения в коре мозга, имеют отношение к памяти. Третий слой — наружный пирамидный, формируется из пирамидных клеток малой величины и функционально вместе со вторым слоем обеспечивает корко-корковые связи различных извилин мозга. Четвертый слой — внутренний зернистый, содержит звездчатые клетки, здесь заканчиваются специфические таламокор-тикальные пути, т.е. пути, начинающиеся от рецепторов анализаторов. Пятый слой — внутренний пирамидный, слой крупных пирамид, которые являются выходными нейронами, аксоны их идут в продолговатый и спинной мозг. Шестой слой — полиморфных клеток. Большинство нейронов этого слоя образуют кортикоталамичес-кие пути.
Нейронный состав, его распределение по слоям различаются в разных областях коры, что позволило выделить в мозге человека 53 цитоархитектонических поля. Причем, разделение на цитоархитек-тонические поля формируется по мере совершенствования функции коры в филогенезе.
42
Первичные слуховые, соматосенсорные, кожные и другие поля имеют рядом расположенные вторичные и третичные поля, обеспечивающие ассоциацию функций данного анализатора (сенсорной системы) с функциями других анализаторов. Для всех анализаторов характерен соматотопический принцип организации проекции на кору периферических рецепторных систем. Так, в сенсорной коре II центральной извилины имеются участки представительства каждой точки кожной поверхности, в двигательной коре каждая мышца имеет свою топику, свое место, раздражая которые можно получить движение этой мышцы; в слуховой коре имеется топическая локализация определенных тонов (тонотопическая локализация). В проекции рецепторов сетчатки глаза на 17-е зрительное поле коры имеется точное топографическое распределение. Гибель локальной зоны 17 поля приводит к слепоте, если изображение падает на участок сетчатки, проецирующийся на поврежденную зону коры.
Особенностью корковых полей является экранный принцип их функционирования. Этот принцип заключается в том, что рецептор проецирует свой сигнал не на один нейрон коры, а на их поле, которое образуется коллатералями и связями нейронов. В результате сигнал фокусируется не точка в точку, а на множестве нейронов, что обеспечивает его полный анализ и возможность передачи в другие заинтересованные в процессе структуры. Экранный принцип реализуется благодаря особой организации взаимодействия входных и выходных элементов коры.
Входные (афферентные) импульсы поступают в кору снизу, поднимаются к звездчатым и пирамидным клеткам 3-4-5 слоев коры. От звездчатых клеток 4-го слоя сигнал идет к пирамидным нейронам 3-го слоя, а отсюда — по ассоциативным волокнам — к другим полям, областям коры мозга. Звездчатые клетки 3 поля переключают сигналы, идущие в кору, на пирамидные нейроны 5 слоя, отсюда обработанный сигнал уходит из коры к другим структурам мозга.
В коре входные и выходные элементы вместе со звездчатыми клетками образуют так называемые "колонки" — функциональные единицы коры, организованные в вертикальном направлении. Доказательством этому является то, что если микроэлектрод погружается перпендикулярно в кору, то на своем пути он встречает нейроны, реагирующие на один вид раздражения, если же микроэлектрод идет горизонтально по коре, то он встречает нейроны, реагирующие на разные виды стимулов.
Колонка имеет диаметр около 500 мкм и определяется зоной распределения коллатералей восходящего афферентного таламокор-тикального волокна. Соседние колонки имеют взаимосвязи, организующие участки множества колонок в организации той или иной реакции. Возбуждение одной из колонок приводит к торможению соседних. Каждая колонка может иметь ряд ансамблей, реализующих какую-либо функцию по вероятностно-статистическому принципу. Этот принцип заключается в том, что в реакции при повторном раздражении участвует не вся группа нейронов, а только ее часть,
43
причем, в каждом случае эта часть участвующих нейронов может быть разная. Для выполнения функции формируется группа активных нейронов, среднестатистически достаточная для обеспечения нужной функции (статический принцип).
Наличие структурно-различных полей предполагает и разное их функциональное предназначение. Так, в коре мозга в затылочной доле имеется зрительная область, которая воспринимает зрительные сигналы (поле 17), распознает их (поле 18), оценивает значение увиденного (поле 19). Повреждение поля 18 приводит к тому, что человек видит, но не узнает предметы, видит написанные слова, но не понимает их. В височной доле коры расположены 22, 41, 42 поля, участвующие в восприятии и анализе слуховых раздражений, организации слухового контроля речи. Повреждение поля 22 приводит к нарушению понимания значения произносимых слов. В височной доле локализован и корковый конец вестибулярного анализатора. Теменная доля мозга связана с соматической чувствительностью, относящейся к речевой функции. Здесь оцениваются воздействия на рецепторы кожи, рецепторы глубокой чувствительности и осуществляется оценка веса, свойств поверхности, формы, размера предмета. В лобной области расположены центры координации движений, в том числе и речи.
Распределение функций по областям мозга не является абсолютным: практически все области мозга имеют полисенсорные нейроны, т.е. нейроны, реагирующие на различные раздражения. Отсюда, при повреждении, например, 17 поля зрительной области, его функцию могут выполнять поля 18 и 19. Помимо этого, разные двигательные эффекты раздражения одного и того же пункта коры наблюдаются в зависимости от текущей деятельности. Если операцию удаления одной из зон коры провести в раннем детском возрасте, когда распределение функций закреплено еще не жестко, восстановление функции утраченной области происходит практически полностью. Все это — проявления механизмов динамической локализации функций, позволяющих компенсировать функционально и анатомически нарушенные структуры. Механизм динамической локализации функций проявляется тем, что в коре имеет место последовательное перекрытие периферических рецептивных полей.
Особенностью коры головного мозга является ее способность длительно сохранять следы возбуждения. В спинном мозге, после раздражения, следовые процессы сохраняются секунды; в подкорковостволо-вых отделах — в форме сложных двитательно-координаторных актов, доминантных установок, эмоциональных состояний эти процессы длятся часами; в коре мозга следовые процессы могут сохраняться в течение всей жизни. Это свойство придает коре исключительное значение в механизмах переработки и хранения информации, накопления базы знаний. Сохранение следов возбуждения в коре проявляется в колебаниях циклов уровня возбудимости коры, которые длятся в двигательной коре 3- 5 минут, в зрительной — 5-8 минут, i Основные процессы, происходящие в коре, реализуются двумя /состояниями: возбуждения и торможения. Эти состояния всегда
44
реципрокны. Они возникают, например, в пределах двигательного анализатора, что наблюдается всегда при движениях, они могут возникать и между разными анализаторами. Тормозное влияние одного анализатора на другие обеспечивает сужение, сосредоточенность внимания на одном процессе. Реципрокные отношения активности часто наблюдаются в соседних нейронах.
Отношение между возбуждением и торможением в коре проявляется в форме так называемого латерального торможения. При латеральном торможении вокруг зоны возбуждения формируется зона заторможенных нейронов, и она, как правило, в два раза по протяженности больше зоны возбуждения. Латеральное торможение обеспечивает контрастность восприятия, что, в свою очередь, позволяет идентифицировать воспринимаемый объект.
Помимо латерального пространственного торможения, в коре после возбуждения всегда возникает торможение активности, и наоборот, после торможения — возбуждение (последовательная индукция). В тех случаях, когда торможение не в состоянии сдерживать возбудительный процесс в определенной зоне, возникает иррадиация возбуждения в коре. Иррадиация может происходить по коре от нейрона к нейрону, по системам ассоциативных волокон 1-го слоя, тогда она имеет очень малую скорость — 0,5-2,0 м в секунду. Иррадиация возбуждения возможна и за счет аксонных связей пирамидных клеток 3-го слоя коры между соседними структурами, в том числе, между разными анализаторами. Иррадиация возбуждения обеспечивает взаимоотношение состояний областей коры при организации условнорефлекторного и других форм поведения.
Наряду с иррадиацией возбуждения, которое происходит за счет импульсной передачи активности, существует иррадиация торможения по коре. Механизм иррадиации торможения заключается в переводе нейронов в тормозное состояние, за счет торможения приходящих к ним аксонов, их синапсов.
Оценка функционального состояния коры головного мозга человека трудная, и до настоящего времени нерешенная задача. Одним из подходов, косвенно свидетельствующем о функциональном состоянии головного мозга, его структур, является регистрация в них колебаний электрических потенциалов.
Каждый нейрон имеет заряд мембраны, при активации нейрона этот заряд генерируется в форме импульсных разрядов, при торможении заряд мембраны чаше увеличивается и возникает ее гиперполяризация. Глия мозга также имеет заряд мембран своих звездчатых элементов. Заряд мембраны нейронов, глии, его динамика, процессы, происходящие в синапсах, дендритах, аксонном холмике, в аксоне — все это постоянно изменяющиеся, разнообразные и разнонаправленные по знаку, по интенсивности, по скорости процессы. Их интегральные характеристики зависят от функционального состояния нервной структуры и определяют суммарно ее электрические показатели. Эти показатели, если они регистрируются через микроэлектроды, отражают активность локального (до 100 мкм в диаметре) участка мозга и называются фокальной активностью.
45
![]()
![]()



В случае, если регистрирующий электрод располагается в подкорковой структуре, регистрируемая через него активность называется субкортикограммой, если электрод располагается в коре мозга — кортикограммой. Наконец, тогда, когда электрод располагается на поверхности кожи головы, через него регистрируется суммарная активность, в которой есть вклад как коры, так и подкорковых структур. Это проявление активности называется электроэнцефалограммой (ЭЭГ) (рис.15.6).
Рис. 15.6. Основные ритмы электроэнцефалограммы (схема).
I — бета-ритм, II — альфа-ритм, III — тета-ритм, IV — дельта-ритм, V — судорожные разряды.
Все виды активности мозга в динамике подвержены усилению и ослаблению и сопровождаются определенными ритмами электрических колебаний. В покое у человека, при отсутствии внешних раздражений, преобладают медленные ритмы. Это находит отражение в ЭЭГ в форме так называемого альфа-ритма, частота колебаний которого составляет 8-13 колебаний в секунду, а их амплитуда составляет примерно 50 мкв.
46
Переход человека к деятельности приводит к смене альфа-ритма на более быстрый бета-ритм, имеюшей частоту 14-30 колебаний в секунду, амплитуда которых достигает 25 мкв. Переход от состояния покоя ко сну сопровождается развитием более медленной ритмики — тета-ритм — 4-7 колебаний в секунду, или дельта-ритм — 0,5-3,5 колебаний в секунду. Амплитуда медленных ритмов колеблется в пределах 100-300 мкв. В том случае, когда на фоне покоя или другого состояния мозга человека предъявляется раздражение, например, свет, звук, электрический ток, то в ЭЭГ регистрируются так называемые вызванные потенциалы (ВП). Латентный период и амплитуда вызванных потенциалов зависят от интенсивности наносимого раздражения, их компоненты, количество и характер колебаний зависят от адекватности стимула.
