
- •1. Состав сооружений магистральных нефтепроводов Классификация нефтепроводов
- •Основное оборудование перекачивающих станций
- •4. Рабочие характеристики насосных агрегатов и станций
- •8.Потери напора в трубопроводе
- •9 Определение перевальной точки и расчетной длины нефтепровода
- •12, Определение числа перекачивающих станций
- •14. Расстановка перекачивающих станций по трассе нефтепровода
- •16. Расчет нефтепровода при заданном положении
- •17 Расчет коротких трубопроводов
- •19. Регулирование режимов работы нефтепровода
- •20. Режим работы нефтепровода при отключении перекачивающих станций
- •21 Выбор рациональных режимов эксплуатации магистрального нефтепровода
- •22 Нефтепровод со сбросом
- •25. Состав сооружений и классификация магистральных газопроводов
- •26. Основные физические свойства газов
- •27 Уравнение неразрывности и уравнение движения
- •28 Изменение давления по длине газопровода
- •29 Среднее давление в газопроводе
- •30 Изменение температуры газа по длине газопровода
- •32 Влияние рельефа трассы на пропускную способность газопровода
- •Наклонный газопровод
- •33 Рельефный газопровод
- •34 Коэффициент гидравлического сопротивления.
- •36 Однониточный газопровод с участками различного диаметра
- •37 Параллельные газопроводы
- •39 Типы и характеристики центробежных нагнетателей
- •40 Определяется среднее ориентировочное расстояние между кс
- •41 Уточненный тепловой и гидравлический расчет участка газопровода между двумя компрессорными станциями
- •42 Расчет режима работы компрессорной станции
- •43 Аккумулирующая способность участка газопровода
- •44 Гидратообразование в газопроводах и борьба с ним
- •47 Основные способы защиты трубопроводов от коррозии
- •48 Катодная защита
- •49 Протекторная защита
- •50 Электродренажная защита
12, Определение числа перекачивающих станций
На основании уравнения баланса напоров, необходимое число перекачивающих станций составит
,
13,Рассмотрим вариант округления числа ПС в меньшую сторону В этом случае при n<n0 напора станций недостаточно, следовательно для обеспечения плановой производительности QПЛ необходимо уменьшить гидравлическое сопротивление трубопровода прокладкой дополнительного лупинга (вставки большего диаметра Необходимую длину лупинга определяем следующим образом. Запишем уравнение баланса напоров для расчетного n0 и округленного n числа перекачивающих станций
(1.41)
Вычитая из первого уравнения второе, получим
(1.42)
откуда
(1.43)
Аналогичное выражение можно получить и для вставки большего диаметра
(1.44)
Во втором случае при округлении числа перекачивающих станций n0 в большую сторону, в трубопроводе установится расход Q>QПЛ (рис. 1.14). Если нет возможности обеспечить такую производительность, требуется снизить напор станции. Уменьшить напоры ПС можно следующими способами: установкой сменных роторов, отключением части насосов (циклической перекачкой), а также обточкой рабочих колес.
При обточке рабочего колеса магистрального насоса его напор должен быть уменьшен до величины
(1.45)
Диаметр уменьшенного после обточки рабочего колеса равен
, (1.46)
где DЗ – диаметр заводского рабочего колеса; Q – подача насоса, равная QПЛ;
14. Расстановка перекачивающих станций по трассе нефтепровода
Расстановка перекачивающих станций выполняется графически на сжатом профиле трассы. Метод размещения станций по трассе Рассмотрим реализацию этого метода для случая округления числа перекачивающих станций в большую сторону на примере одного эксплуатационного участка. В работе находятся три перекачивающие станции, оборудованные однотипными магистральными насосами и создающие одинаковые напоры HСТ1= HСТ1= HСТ1. На ГПС установлены подпорные насосы, создающие подпор hП. В конце трубопровода (эксплуатационного участка) обеспечивается остаточный напор hОСТ По известной производительности нефтепровода определяется значение гидравлического уклона i. Строится треугольник гидравлического уклона abc (с учетом надбавки на местные сопротивления) в принятых масштабах сжатого профиля трассы.Из начальной точки трассы вертикально вверх в масштабе высот строится отрезок AC, равный суммарному активному напору перекачивающих станций AC=hП+n·HСТ. Вычитая из суммарного активного напора отрезок СС1, равный величине hОСТ, строим через точки С1B1 прямую линию, параллельную гипотенузе гидравлического треугольника abc. Точка C1 должна совпадать с конечной отметкой zК нефтепровода.
Место положения на трассе второй перекачивающей станции определяется с помощью отрезка, проведенного из вершины напора HСТ1 параллельно линии гидравлического уклона до пересечения с профилем. Расположению второй перекачивающей станции будет соответствовать точке M на профиле трассы.Аналогичными построениями определяется место размещения следующей станции (точка N