
- •Лекционный курс
- •Раздел 1. Линейная алгебра с элементами аналитической геометрии
- •Тема 1. Элементы векторной алгебры и ее приложения.
- •1.1. Линейные операции над векторами
- •1.2. Скалярное произведение векторов
- •1.3. Векторное произведение векторов
- •1.4. Типовые задачи, решаемые средствами векторной алгебры
- •1.5. Линейное, евклидово и нормированное пространства.
- •Тема 2. Матрицы и определители
- •2.1. Понятие матрицы и действия с ними.
- •2.2. Транспонирование матриц
- •2.3. Произведение матриц.
- •2.4. Ранг матрицы
- •2.5. Понятие обратной матрицы
- •2.6.Определители и их свойства.
- •2.7. Линейные операторы и матрицы
- •2.8. Задача о собственных значениях
- •2.9. Свойства симметрических матриц
- •2.10. Квадратичные формы и их приведение к каноническому виду
- •Тема 3. Системы линейных уравнений
- •3.1.Формулы Крамера
- •3.2. Метод Гаусса.
- •3.3.Матричный метод решения линейной системы.
- •3.4. Понятие о приближенных методах решения линейных систем
- •Тема 4. Элементы аналитической геометрии на прямой, плоскости и в трехмерном пространстве.
- •4.1. Уравнения линий и поверхностей
- •4.2. Уравнение 1-й степени на плоскости
- •4.3. Уравнения первой степени в пространстве
- •4.4. Уравнения первой степени в пространстве
- •4.5. Типовые задачи на плоскость в пространстве.
- •4.6. Уравнения 2-й степени на плоскости.
- •4.7. Уравнения 2-й степени в пространстве
- •4.8. Цилиндры и поверхности вращения
- •Раздел 2. Математический анализ и дифференциальные уравнения.
- •Тема 5.Функции и их свойства
- •5.1. Функция, способы ее задания, свойства, график функции, преобразование графика сдвигом и деформацией.
- •Тема 6. Пределы и непрерывность.
- •6.1. Понятие предела
- •6.2. Замечательные пределы.
- •6.3. Алгоритм вычисления пределов.
- •6.4. Примеры эквивалентных бмв.
- •Тема 7. Производная и дифференциал функции.
- •7.1. Понятие производной
- •7.2. Дифференциальное исчисление функции одного переменного.
- •7.3. Из определения вытекает алгоритм вычисления производной.
- •7.4.Таблица и основные правила.
- •7.5. Производная и дифференциал.
- •7.6. Производная и дифференциал высшего порядка.
- •Тема 8. Приложения производной
- •8.2.Приложение производной к исследованию функций.
- •Тема 9. Неопределенный интеграл.
- •9.1.Первообразная. Неопределенный интеграл и его свойства
- •9.3.Методы интегрирования.
- •9.4.Рациональные дроби.
- •9.4.Рациональные тригонометрические функции.
- •9.5.Простейшие иррациональные выражения.
- •Тема 10. Определенный интеграл.
- •Методы нахождения определенного интеграла
- •10. 2.Несобственные интегралы.
- •Тема 11. Дифференциальные уравнения.
- •11.1 Определение дифференциального уравнения
- •11.2. Некоторые дифференциальные уравнения первого порядка. Методы Их Решения.
- •Тема 12 Функции нескольких переменных
- •12.1.Основные понятия
- •12.2.Непрерывность функций нескольких переменных
- •12.3.Частные производные и дифференциалы
- •12.4. Производная по направлению и градиент
- •12.5. Производная сложной функции нескольких переменных
- •12.6. Производные и дифференциалы высших порядков
- •12.7. Производные неявных функций
- •12.8.Экстремумы функций нескольких переменных
- •Раздел 3. Ряды.
- •Тема 13. Числовые и степенные ряды.
- •Раздел 4. Теория вероятностей и математическая статистика
- •Тема 14. Основные понятия теории вероятностей.
- •1. Понятие события.
- •2. Классическое определение вероятности. Свойства вероятности.
- •3. Статистическое определение вероятности.
- •4. Элементы комбинаторики
- •Тема 15. Основные теоремы теории вероятностей и следствия из них.
- •15.1.Теорема сложения.
- •15.2. Условная вероятность события. Теорема умножения
- •15.3. Вероятность появления хотя бы одного события
- •15.4. Формула полной вероятности.Формула Байеса.
- •15.5. Повторные независимые испытания
- •15.6. Локальная теорема Муавра- Лапласа
- •15.7. Интегральная теорема Муавра-Лапласа.
- •Тема 16. Случайные величины и способы их описания
- •16.1. Понятие случайной величины. Дискретные и непрерывные
- •16.2. Функция распределения случайной величины. График функции
- •16.4. Равномерный закон распределения.
- •16.6. Правило «трех сигм».
- •16.7. Показательное распределение.
- •16.8. Функция надежности.
- •16.9. Показательный закон надежности.
- •16.10. Математическое ожидание.
- •16.11. Дисперсия.
- •16.12. Числовые характеристики непрерывных случайных величин.
- •16.13. Числовые характеристики случайных величин, имеющих некоторые стандартные законы распределения.
- •1. Биномиальное распределение.
- •2. Закон Пуассона.
- •3. Равномерное распределение.
- •4. Нормальное распределение.
- •16.14. Закон больших чисел. Неравенство Чебышева. Теоремы Чебышева и Бернулли.
- •Корреляционный анализ.
- •Глоссарий
- •Темы контрольных работ.
- •Основная литература
- •Дополнительная литература
16.4. Равномерный закон распределения.
Часто на практике мы имеем дело со случайными величинами, распределенными определенным типовым образом, то есть такими, закон распределения которых имеет некоторую стандартную форму. В прошлой лекции были рассмотрены примеры таких законов распределения для дискретных случайных величин (биномиальный и Пуассона). Для непрерывных случайных величин тоже существуют часто встречающиеся виды закона распределения, и в качестве первого из них рассмотрим равномерный закон.
Определение. Закон распределения непрерывной случайной величины называется равномерным, если на интервале, которому принадлежат все возможные значения случайной величины, плотность распределения сохраняет постоянное значение ( f(x) = const при a ≤ x ≤ b, f(x) = 0 при x < a, x > b.
Найдем
значение, которое принимает f(x)
при
Из условия нормировки следует, что
откуда
.
Вероятность
попадания равномерно распределенной
случайной величины на интервал
равна при этом
Вид
функции распределения для нормального
закона:
Пример. Автобусы некоторого маршрута идут с интервалом 5 минут. Найти вероятность того, что пришедшему на остановку пассажиру придется ожидать автобуса не более 2 минут.
Решение.
Время ожидания является случайной
величиной, равномерно распределенной
в интервале [0, 5]. Тогда
16.5. Нормальный закон распределения вероятностей. Нормальная кривая. Функция Лапласа. Вычисление вероятности попадания в заданный интервал нормальной случайной величины. Правило трех сигм. Показательное распределение. Функция надежности. Показательный закон надежности.
Определение. Непрерывная случайная величина называется распределенной по нормальному закону, если ее плотность распределения имеет вид:
Замечание. Таким образом, нормальное распределение определяется двумя параметрами: а и σ.
График плотности нормального распределения называют нормальной кривой (кривой Гаусса). Выясним, какой вид имеет эта кривая, для чего исследуем функцию (6.1).
Область определения этой функции: (-∞, +∞).
f(x) > 0 при любом х (следовательно, весь график расположен выше оси Ох).
то есть ось Ох служит горизонтальной асимптотой графика при
при х = а;
приx > a,
приx < a. Следовательно,
- точка максимума.
F(x – a) = f(a – x), то есть график симметричен относительно прямой х = а.
при
, то есть точки
являются точками перегиба.
Примерный вид кривой Гаусса изображен на рис.3.
х
Рис.3.
Найдем вид функции распределения для нормального закона:
Перед нами так называемый «неберущийся» интеграл, который невозможно выразить через элементарные функции. Поэтому для вычисления значений F(x) приходится пользоваться таблицами. Они составлены для случая, когда а = 0, а σ = 1.
Определение. Нормальное распределение с параметрами а = 0, σ = 1 называется нормированным, а его функция распределения
-
функцией Лапласа.
Замечание.
Функцию
распределения для произвольных параметров
можно выразить через функцию Лапласа,
если сделать замену:
,
тогда
.
Найдем вероятность попадания нормально распределенной случайной величины на заданный интервал:
Пример. Случайная величина Х имеет нормальное распределение с параметрами а = 3, σ = 2. Найти вероятность того, что она примет значение из интервала (4, 8).
Решение.