Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Ответы не наши / gista_ / билет 13 / ЯДРО КЛЕТКИ

.doc
Скачиваний:
50
Добавлен:
21.06.2015
Размер:
46.59 Кб
Скачать

ЯДРО КЛЕТКИ

Ядро является важнейшим компонентом клетки, содержащим ее генетический аппарат.

Функции ядра:

О хранение генетической информации (в молекулах ДНК, находя­щихся в хромосомах);

© реализацию генетической информации, контролирующей осу­ществление разнообразных процессов в клетке - от синтетических до запрограммированной гибели (апоптоза);

© воспроизведение и передачу генетической информации (при де­лении клетки).

Обычно в клетке имеется только одно ядро, однако встречаются многоядерные клетки, которые образуются вследствие деления клеток, не сопровождающегося цитотомиеи, или слияния нескольких одно­ядерных клеток (последние правильнее называть симпластами).

Форма ядра различных клеток неодинакова: встречаются клетки с округлым, овальным, бобовидным, палочковидным, многолопастным, сегментированным ядром; нередко на поверхности ядра имеются вдавле-ния. Чаще всего форма ядра в целом соответствует форме клетки: оно обычно сферическое в клетках округлой или кубической формы, вытя­нутое или эллипсоидное в призматических клетках, уплощенное -в плоских.

Расположение ядра варьирует в разных клетках; оно может ле­жать в центре клетки (в клетках округлой, плоской, кубической или вытянутой формы), у ее базального полюса (в клетках призматической формы) или на периферии (например, в жировых клетках).

Величина ядра относительно постоянна для каждого типа клеток, однако она может меняться в определенных пределах, увеличиваясь при усилении функциональной активности клетки и уменьшаясь при ее уг­нетении.

Компоненты ядра. В ядре неделящейся (интерфазной) клетки выявляются кариолемма (ядерная оболочка), хроматин, ядрышко и ка­риоплазма (ядерный сок). Как будет видно из дальнейшего изложения,

хроматин и ядрышко представляют собой не самостоятельные компо­ненты ядра, а являются морфологическим отражением хромосом, при­сутствующих в интерфазном ядре, но не выявляемых в качестве отдель­ных образований.

Ядерная оболочка

Ядерная оболочка (кариолемма) на светооптическом уровне практически не определяется; под электронным микроскопом обнару­живается, что она состоит из двух мембран - наружной и внутренней, -разделенных полостью шириной 15-40 им (перинуклеарным простран­ством) и смыкающихся в области ядерных пор

Наружная мембрана составляет единое целое с мембранами грЭПС - на ее поверхности имеются рибосомы, а перинуклеарное про­странство соответствует полости цистерн грЭПС и может содержать синтезированный материал. Со стороны цитоплазмы наружная мембрана окружена рыхлой сетью промежуточных (виментиновых) филаментов (см. рис. 3-18).

Внутренняя мембрана - гладкая, ее интегральные белки связаны с ядерной пластинкой - ламиной - слоем толщиной 80-300 нм, состоя­щим из переплетенных промежуточных филаментов (ламинов), образую­щих кариоскелет. Ламина играет очень важную роль в: (1) поддержании формы ядра; (2) упорядоченной укладке хроматина; (3) структурной организации паровых комплексов; (4) формировании кариолеммы при делении клеток.

Ядерные поры занимают 3-35% поверхности ядерной оболочки. Они более многочисленны в ядрах интенсивно функционирующих кле­ток и отсутствуют в ядрах спермиев. Поры (см. рис. 3-19) содержат два параллельных кольца (по одному с каждой поверхности кариолеммы) диаметром 80 нм, которые образованы 8 белковыми гранулами. От этих гранул к центру сходятся фибриллы, формируйте перегородку (диа­фрагму) толщиной около 5 нм, в середине которой лежит центральная гранула (по некоторым представлениям, это - транспортируемая через пору субъединица рибосомы). Совокупность структур, связанных с ядер­ной порой, называется комплексом ядерной поры. Последний образует водный канал диаметром 9 нм, по которому движутся мелкие водорас­творимые молекулы и ионы. Гранулы поровых комплексов структурно связаны с белками ядерной ламины, которая участвует в их организа­ции.

Ядерная оболочка в клетках животных и человека содержит до 2000-4000 поровых комплексов. В ядро из цитоплазмы через них посту­пают синтезированные белки, в обратном направлении переносятся мо­лекулы РНК и субъединицы рибосом.

Функции комплекса ядерной поры:

1. Обеспечение регуляции избирательного транспорта веществ между цитоплазмой и ядром.

2. Активный перенос в ядро белков, имеющих особую маркировку в виде так называемой последовательности ядерной локализации -Nuclear Localization Sequence (NLS), распознаваемой рецепторами NLS (в комплексе поры).

3. Перенос в цитоплазму субъединиц рибосом, которые, однако, слишком велики для свободного прохождения пор; их транспорт, веро­ятно, сопровождается изменением конформации перового комплекса.

Хроматин

Хроматин (от греч. chroma - краска) мелкие зернышки и глыбки материала, который обнаруживается в ядре клеток и окрашивается ос­новными красителями. Хроматин состоит из комплекса ДНК и белка и соответствует хромосомам, которые в интерфазном ядре представлены длинными, тонкими перекрученными нитями и неразличимы как инди­видуальные структуры. Выраженность спирализапии каждой из хромо­сом неодинакова по их длине. Различают два вида хроматина - эухрома-тин и гетерохроматин.

Эухроматин соответствует сегментам хромосом, которые деспира-лизованы и открыты для транскрипции. Эти сегменты не окрашива­ются и не видны в световой микроскоп.

Гетерохроматин соответствует конденсированным, плотно скру­ченным сегментам хромосом (что делает их недоступными для транс­крипции). Он интенсивно окрашивается основными красителями, и в световом микроскопе имеет вид гранул.

Таким образом, по морфологическим признакам ядра (соотноше­нию содержания эу- и гетерохроматина) можно оценить активность процессов транскрипции, а, следовательно, синтетической функции клетки. При ее повышении это соотношение изменяется в пользу эухро-матина, при снижении - нарастает содержание гетерохроматина. При полном подавлении функции ядра (например, в поврежденных и гибну­щих клетках, при ороговении эпителиальных клеток эпидермиса - кера-тиноцитов, при образовании ретикулоцитов крови) оно уменьшается в размерах, содержит только гетерохроматин и окрашивается основны­ми красителями интенсивно и равномерно. Такое явление называется кариопикнозом (от греч. karyon - ядро и pyknosis - уплотнение).

Распределение гетерохроматина (топография его частиц в яд­ре) и соотношение содержания эу- и гетерохроматина характерны для клеток каждого типа, что позволяет осуществлять их идентификацию

как визуально, так и с помощью автоматических анализаторов изобра­жения. Вместе с тем, имеются определенные общие закономерности распределения гетерохроматина в ядре: его скопления располагают­ся под кариолеммой, прерываясь в области пор (что обусловлено его связью с ламиной) и вокруг ядрышка (перинуклеолярный гетерохрома-тин), более мелкие глыбки разбросаны по всему ядру (см. рис. 3-18).

Тельце Барра - скопление гетерохроматина, соответствующее од­ной Х-хромосоме у особей женского пола, которая в интерфазе плотно скручена и неактивна. В большинстве клеток оно лежит у кариолеммы, а в гранулоцитах крови имеет вид маленькой добавочной дольки ядра ("барабанной палочки"). Выявление тельца Барра (обычно в эпители­альных клетках слизистой оболочки полости рта) используется как ди­агностический тест для определения генетического пола (обязателен, в частности, для женщин, участвующих в Олимпийских Играх).

Упаковка хроматина в ядре. В дсконденсированном состоянии длина одной молекулы (двойной спирали) ДНК, образующей каждую хромосому, равна в среднем, около 5 см, а общая длина молекул ДНК всех хромосом в ядре (диаметром около 10 мкм) составляет более 2 м (что сравнимо с укладкой нити длиной 20 км в теннисный мячик диа­метром около 10 см), а в S-период интерфазы - более 4 м. Конкретные механизмы, препятствующие спутыванию этих нитей во время транс­крипции и репликации, остаются нераскрытыми, однако очевидна необ­ходимость компактной упаковки молекул ДНК, В клеточном ядре это осуществляется благодаря их связи со специальными основными (гис-тоновыми) белками. Компактная упаковка ДНК в ядре обеспечивает:

(1) упорядоченное расположение очень длинных молекул ДНК в небольшом объеме ядра;

(2) функциональный контроль активности генов (вследствие вли­яния характера упаковки на активность отдельных участков генома.

Уровни упаковки хроматина (рис. 3-20). Начальный уровень упа­ковки хроматина, обеспечивающий образование нуклеосомной нити ди­аметром 11 нм, обусловлен намоткой двойной нити ДНК (диаметром 2 нм) на блоки дисковидной формы из 8 гистоновых молекул (нуклео-сомы). Нуклеосомы разделены короткими участками свободной ДНК. Второй уровень упаковки также обусловлен гистонами и приводит к скручиванию нуклеосомной нити с формированием хроматиновой фибриллы диаметром 30 нм. В интерфазе хромосомы образованы хрома-тиновыми фибриллами, причем каждая хроматида состоит из одной фибриллы. При дальнейшей упаковке хроматиновые фибриллы образу­ют петли (петельные домены) диаметром 300 нм, каждый из которых соответствует одному или нескольким генам, а те, в свою очередь, в результате еще более компактной укладки, формируют участки конденси­рованных хромосом, которые выявляются лишь при делении клеток.

В хроматине ДНК связана помимо гастонов также и с негисто-новыми белками, которые регулируют активность генов. Вместе с тем, и гистоны, ограничивая доступность ДНК для других ДНК-связьвзающих белков, могут участвовать в регулядии активности генов.

Функция хранения генетической информации в ядре в неизме­ненном виде имеет исключительно важное значение для нормальной жизнедеятельности клетки и всего организма. Подсчитано, что при ре­пликации ДНК и в результате ее повреждений внешними факторами в каждой клетке человека ежегодно происходят изменения 6 нуклео-тидов. Возникшие повреждения молекул ДНК могут исправляться в ре­зультате процесса репарации или путем замещения после распознава­ния и маркировки соответствующего участка.

В случае невозможности репарации ДНК при слишком значитель­ных повреждениях включается механизм запрограммированной гибели клетки (см. ниже). В этой ситуации "поведение" клетки можно оценить как своего рода "альтруистическое самоубийство": ценой своей гибели она спасает организм от возможных негативных последствий реплика­ции и амплификации поврежденного генетического материала.

Способность к репарации ДНК у взрослого человека снижается примерно на 1% с каждым годом. Это снижение может отчасти объяс­нить, почему старение является фактором риска развития злокачест­венных заболеваний. Нарушения процессов репарации ДНК характерно для ряда наследственных болезней, при которых резко повышены как чувствительность к повреждающим факторам, так и частота разви­тия злокачественных новообразований.

Функция реализации генетической информации в интерфазном ядре осуществляется непрерывно благодаря процессам транскрипции. Геном млекопитающих содержит около ЗхЮ9 нуклеотидов, однако не более 1% его объема кодирует важные белки и принимает участие в ре­гуляции их синтеза. Функции основной некодирующей части генома не­известны.

При транскрипции ДНК образуется очень крупная молекула РНК (первичный транскрипт), которая связывается с ядерными белками с образованием рибонуклеопротеинов (РНП). В первичном РНК-транс­крипте (как и в матричной ДНК) имеются дискретные значащие после­довательности нуклеотидов (экзоны), разделенные длинными некодирую­щими вставками (нитронами). Процессинг РНК-транскрипта включает отщепление нитронов и стыковку экзонов - сплайсинг (от англ, splicing - сращивание). При этом очень крупная молекула РНК превращается в достаточно мелкие молекулы иРНК, отделяющиеся от связанных с ни­ми белков при переносе в цитоплазму.

Соседние файлы в папке билет 13