
- •Методические указания
- •Состав оксидов
- •Получение оксидов
- •Классификация оксидов
- •Химические свойства оксидов Основные оксиды реагируют:
- •Основания
- •Номенклатура
- •2.2. Классификация
- •2.3. Химические свойства оснований
- •Получение оснований
- •Кислоты
- •3.1. Классификация кислот
- •3.2. Номенклатура
- •3.3. Химические свойства кислот
- •3.4. Получение кислот
- •2) Бескислородных – взаимодействие простых веществ:
- •4.1. Классификация
- •4.2. Номенклатура
- •4.3. Химические свойства солей
- •4.4. Получение солей
- •Строение атома
- •Значимость изучения строения атома для химии
- •Модели строения атома
- •Модель Томсона
- •2.2 Модель Резерфорда
- •2.3. Модель Бора
- •2.4. Квантово-механическая модель строения атома
- •3. Квантовые числа
- •Многоэлектронные атомы
- •4.1. Принцип Паули
- •4.2. Правило Гунда
- •4.3. Принцип наименьших энергий
- •Химическая кинетика и равновесие Химическая кинетика
- •Химическое равновесие
- •Растворы
- • Закон Рауля
- •Способы выражения концентрации раствора
- •Электролитическая диссоциация
- •Ионные реакции в растворах
- •Гидролиз солей
- •Диссоциация воды
- •1.2. Водородный показатель – рН
- •1.3. Сильные и слабые электролиты
- •1.4. Гидролиз солей
- •1.5. Количественные характеристики гидролиза
- •Окислительно-восстановительные реакции
- •Составление уравнений окислительно-восстановительных реакций методом электронного баланса
- •Электродные потенциалы. Гальванические элементы
- •Двойной электрический слой. Электродный потенциал
- •2. Гальванические элементы
- •Коррозия металлов. Методы защиты от коррозии
- •Вяжущие вещества. Коррозия бетонов
- •1. Вяжущие вещества
- •I.2. Воздушные вяжущие вещества
- •I.2.I. Строительный гипс
- •1.3. Гидравлические вяжущие вещества
- •1.3.1. Портландцемент
- •2. Коррозия бетона и меры борьбы с ней
- •3.1. Виды коррозии бетона
- •3.1. Коррозия бетона первого вида
- •4. Методы предотвращения и снижения степени коррозии бетона.
2. Коррозия бетона и меры борьбы с ней
Коррозией бетона называется понижение прочности, повреждение и разрушение бетона под влиянием окружающей среды.
Большой вклад в изучение коррозии бетона и мер борьбы с ней внесли русские ученые А.А.Байков, В.М.Москвин, С.Н.Алексеев, В.В,Тимашев и др.. различают коррозию бетона трех видов.
3.1. Виды коррозии бетона
3.1. Коррозия бетона первого вида
Этот вид коррозии сопровождается растворением составных частей цементного камня, в первую очередь, гидроксида кальция под действием проточной воды. Хотя растворимость Ca(OH)2 в воде невелика (1,7 г/л при 15°С), но под действием проточной воды из цементного камня может вымыться большое количество Ca(OH)2. в связи с этим цементный камень становится пористым, теряет связанность и часть прочности. Если бетон плотный и не имеет пустот и трещин, то коррозия его может протекать только с поверхности; если же бетон пористый и вода проходит сквозь него под напором, то процесс протекает очень интенсивно. Наиболее сильное растворяющее действие на гидроксид кальция оказывает чистая дистиллированная вода (на заводах) и мягкая природная (дождевая) вода. Однако растворению Ca(OH)2 препятствует защитный верхний слой из карбоната кальция, образующегося на поверхности твердеющего бетона по реакции:
Ca(OH)2 + СО2 = Ca(OH)3 +Н2О (1).
Эта реакция называется реакцией карбонизации. Растворимость карбоната кальция в чистой воде приблизительно в 100 раз меньше, чем гидроксида кальция. Поэтому верхний слой из карбоната кальция, хотя и очень тонкий – несколько микрометров, защищает цементный камень от вымывания Ca(OH)2 из бетона. Поэтому при строительстве морских сооружений из бетонных блоков последние обязательно выдерживают 2-3 месяца на берегу перед опусканием их в водоем.
Коррозия бетона второго вида
Этот вид коррозии происходит в результате реакций обмена между кислотами или солями, растворенными в воде, и составними частями цементного камня. В результате такого взаимодействия образуются вещества, которые легко растворяются в воде и вымываются ею из бетона. Это также способствует понижению прочности и разрушению бетона, т.е. его коррозии.
По вышеприведенной схеме протекает коррозия бетона при контакте его с природными водами, содержащими свободную углекислоту в количестве более 15-20 мг/л. Такая углекислота называется агрессивной по отношению к бетону, т.е. она разрушающе действует на бетон. Процесс коррозии бетона при действии агрессивной углекислоты начинается с растворения карбонатного слоя бетона: CaСO3 + СО2 ↔ Ca(НСO3)2 (2).
Гидрокарбонат кальция Ca(НСO3)2 обладает значительной растворимостью в воде и вымывается из бетона. Лишенный защитного карбонатного слоя бетон быстро разрушается.
Сточные воды могут содержать различные неорганические кислоты, разрушающе действующие на бетон, например:
CaСO3 + 2HCl = CaCl2 + CО2↑ + Н2О (3),
Ca(OН)2 + 2HCl = CaCl2 + 2 Н2О (4).
Образующийся хлорид кальция CaCl2 легко растворим в воде и ею вымывается из бетона.
Аналогично разрушают бетон и аммонийные соли, входящие в состав многих удобрений. Например, нитрат аммония, подвергаясь во влажной среде гидролизу по схеме
NH4NO3 + H2O ↔ NH4OH + HNO3 (5)
образует кислоту HNO3 . Азотная кислота также, как и соляная растворяет СаСО3 и взаимодействуя с Ca(OН)2 бетона, вымывает его.
Особенно опасны для бетонов растворы солей магния т.к. он реагируют не только с карбонатом и гидроксидом кальция, но и с основной составляющей затвердевшего цемента в бетоне – двухкальциевым гидросиликатом 2СаО · SiO2 · nH2O.
Вышеназванные процессы протекают по следущим реакциям:
MgCl2 + H2O ↔ MgOHCl + HCl; (6)
CaСO3 + 2HCl = CaCl2 + CО2↑ + Н2О (7)
Ca(OН)2 + MgSO4 + 2Н2О = Mg(OН)2↓ + Ca SO4 · 2Н2О (8)
2CaO · SiO2 · nH2O + 2MgSO4 + yH2O = 2Mg(OH)2 + 2[Ca SO4 · 2Н2О]↓ +
+ SiO2 ·mH2O↓ (9)
где n + y = m + 6.
Образующийся в реакциях (8) и (9) гидроксид магния Mg(OH)2 хотя и труднорастворим, но связанностью не обладает, поэтому тоже вымывается из бетона водой. Все эти процессы способствуют понижению прочности и разрушению бетона. Соли магния содержатся в морской воде, поэтому она особенно агрессивна по отношению к бетону.
Коррозия бетона третьего вида
Этот вид коррозии происходит при взаимодействии реагентов с компонентами затвердевающего бетона и сопровождается образованием веществ, кристаллизирующихся в порывах бетона с увеличением объема по сравнению с исходными компонентами бетона. Вследствие этого в бетоне возникают расклинивающие напряжения и происходит его растрескивание. Таким образом на бетон действуют серная кислота, сульфаты, гипсовые воды. При этом протекают следущие реакции:
CaСO3 + Н2SO4 + Н2О = CaSO4 · 2Н2О + СO2↑ (10)
CaSO4 · 2Н2О – гипс при кристаллизации увеличивается в объеме по сравнению с исходным компонентом бетона (CaСO3) на 10%;
гипсовые воды,содержащие в растворе сульфат кальция, реагируют с трехкальциевым гидроаллюминатом, входящим в состав бетона, по схеме:
3СаО · Al2O3 · 6H2O + 3CaSO4 + 25H2O = 3CaO · Al2O3 · 3CaSO4 · 31H2O (11).
Образующийся трехкальциевый гидросульфоалюминат при кристаллизации увеличивается в объеме по сравнению с компонентом бетона 3СаО · Al2O3 · 6H2O в 2,5 раза. Коррозия бетона 3 вида происходит особенно быстро, если бетон находится под нагрузкой.
Разбавленные растворы щелочей не разрушают бетон, если они постоянно его омывают. Если же щелочные растворы попеременно контактируют с бетоном, то в этом случае происходит коррозия бетона третьего вида в последствие действия углекислоты воздуха на щелочь, остающуюся в порах влажного бетона. Например, при контакте цемента с раствором гидроксида натрия идет следущая реакция:
2NaOH + CO2↑ + 9H2O = Na2CO3 · 10H2O (12).
Образующаяся сода Na2CO3 · 10H2O также кристаллизируется с увеличением объема в порах высыхающего бетона.