
Глава 2
Вентиляция
Как воздух поступает в альвеолы
В этой и следующих двух главах рассмотрено, каким образом вдыхаемый воздух поступает в альвеолы, как газы переходят через альвеолярно-капиллярный барьер и как они удаляются из легких с током крови. Эти три процесса обеспечиваются соответственно вентиляцией, диффузией и кровотоком.
Рис. 2.1. Схема легкого. Приведены типичные значения объемов и расходов воздуха и крови. На практике эти величины существенно варьируют (по J. В. West: Ventilation/Blood Flow and Gas Exchange. Oxford, Blackwell, 1977, p. 3, с изменениями)
На рис. 2.1 приведено схематическое изображение легкого. Бронхи, образующие воздухоносные пути (см. рис. 1.3), представлены здесь одной трубкой (анатомическим мертвым пространством). По ней воздух поступает в газообменные отделы, ограниченные альвеолярно-капиллярной мембраной и кровью легочных капилляров. При каждом вдохе в легкие поступает около 500 мл воздуха (дыхательный объем). Из рис. 2.1 видно, что объем анатомического мертвого пространства мал по сравнению с общим объемом легких, а объем капиллярной крови гораздо меньше, чем объем альвеолярного воздуха (см. также рис. 1.7).
Легочные объемы
Перед тем как перейти к динамическим показателям вентиляции, полезно коротко рассмотреть “статические” легочные объемы. Некоторые из них можно измерить с помощью спирометра (рис. 2.2). Во время выдоха колокол спирометра поднимается, а перо самописца опускается. Амплитуда колебаний, записываемых при спокойном дыхании, соответствует дыхательному объему. Если же обследуемый делает максимально глубокий вдох, а затем — как можно более глубокий выдох, то регистрируется объем, соответствующий жизненной емкости легких (ЖЕЛ). Однако даже после максимального выдоха в них остается некоторое количество воздуха — остаточный объем (ОО). Объем газа в легких после нормального выдоха называется функциональной остаточной емкостью (ФОЕ).
Функциональную остаточную емкость и остаточный объем нельзя измерить с помощью простого спирометра. Для этого применим метод разведения газа (рис. 2.3), заключающийся в следующем. Воздухоносные пути обследуемого соединяются со спирометром, содержащим в известной концентрации гелий—газ, практически нерастворимый в крови. Обследуемый делает несколько вдохов и выдохов, в результате чего концентрации гелия в спирометре, и в легких выравниваются. Поскольку потерь гелия не происходит, можно приравнять его количества до и после выравнивания концентраций, равные соответственно C1 X V1 (концентрация X объем) и С2 X X (V1+V2). Следовательно, V2 = V1 (C1 —С2)/С2. На практике в ходе выравнивания концентраций в спирометр добавляют кислород (чтобы компенсировать поглощение этого газа испытуемым) и абсорбируют выделяемый углекислый газ.
Функциональную остаточную емкость (ФОЕ) можно измерить также с помощью общего плетизмографа (рис. 2.4). Он представляет собой крупную герметичную камеру, напоминающую кабинку телефона-автомата, с обследуемым внутри.
Рис. 2.2. Легочные объемы. Обратите внимание па то, что функциональную остаточную емкость и остаточный объем нельзя измерить методом спирометрии
Рис. 2.3. Измерение функциональной остаточной емкости (ФОЕ) методом разведения гелия
В конце нормального выдоха с помощью заглушки перекрывается мундштук, через который дышит обследуемый, и его просят сделать несколько дыхательных движений. При попытке вдоха газовая смесь в его легких расширяется, объем их увеличивается, а давление в камере растет с уменьшением объема воздуха в ней. По закону Бойля—Мариотта произведение давления на объем при постоянной температуре — величина постоянная. Таким образом, P1V1 == P2(V1 —deltaV), где P1 и P2—давление в камере соответственно до попытки вдохнуть и во время нее, V1 — объем камеры до этой попытки, a AV — изменение объема камеры (или легких). Отсюда можно рассчитать AV.
Далее необходимо применить закон Бойля—Мариотта к воздуху в легких. Здесь зависимость будет выглядеть следующим образом: P3V2 =P4 (V2 + AV), где Р3 и Р4 — давление в полости рта соответственно до попытки вдохнуть и во время нее, a V2 — ФОЕ, которая и рассчитывается по этой формуле.
Рис. 2.4. Измерение ФОЕ с помощью общей плетизмографии. Когда обследуемый пытается сделать вдох при перекрытых воздухоносных путях, объем его легких несколько увеличивается, давление в дыхательных путях снижается, а давление в камере повышается. Отсюда, используя закон Бойля—Мариотта, можно рассчитать объем легких (подробнее см. в тексте)
Методом общей плетизмографии измеряется общий объем воздуха в легких, в том числе и участков, не сообщающихся с полостью рта вследствие того, что их воздухоносные пути перекрыты (см., например, рис. 7.9). В отличие от этого метод разведения гелия дает лишь объем воздуха, сообщающегося с полостью рта, т. е. участвующий в вентиляции. У молодых здоровых людей эти два объема практически одинаковы. У лиц же, страдающих легочными заболеваниями, участвующий в вентиляции объем может быть значительно меньше общего, так как большое количество газов изолируется в легких из-за обструкции (закрытия) дыхательных путей.
Вентиляция
Предположим, что при каждом выдохе из легких удаляется 500 мл воздуха (рис. 2.1) и что в минуту совершается 15 дыхательных движений. В этом случае общий объем, выдыхаемый за 1 мин, равен 500Х15 ==7500 мл/мин. Это так называемая общая вентиляция, или минутный объем дыхания. Объем воздуха, поступающего в легкие, несколько больше, так как поглощение кислорода слегка превышает выделение углекислого газа.
Однако не весь вдыхаемый воздух достигает альвеолярного пространства, где происходит газообмен. Если объём вдыхаемого воздуха равен 500 мл (как на рис. 2.1), то 150 мл остается в анатомическом мертвом пространстве и за минуту через дыхательную зону легких проходит (500—150)Х15=5250 mл атмосферного воздуха. Эта величина называется альвеолярной вентиляцией. Она имеет важнейшее значение, так как соответствует количеству “свежего воздуха”, который может участвовать в газообмене (строго говоря, альвеолярную вентиляцию измеряют по количеству выдыхаемого, а не вдыхаемого воздуха, однако разница в объемах очень невелика).
Общую вентиляцию можно легко измерить, попросив обследуемого дышать через трубку с двумя клапанами—впускающим воздух при вдохе в воздухоносные пути и выпускающим его при выдохе в специальный мешок. Альвеолярную вентиляцию оценить сложнее. Один из способов ее определения заключается в измерении объема анатомического мертвого пространства (см. ниже) и вычислении его вентиляции (объем X частота дыханий). Полученную величину вычитают из общей вентиляции легких.
Расчеты выглядят следующим образом (рис. 2.5). Обозначим Vт, Vp, Va соответственно дыхательный объем, объем мертвого пространства и объем альвеолярного пространства. Тогда VT=VD+VA, 1)
откуда
VT•n =VD•n +VA•n,
где n - частота дыхания; следовательно,
VE=VD+VA
где V — объем за единицу времени, VE — общая экспираторная (оцениваемая по выдыхаемому воздуху) легочная вентиляция, VD и VA — вентиляция мертвого пространства и альвеолярная вентиляция соответственно (общий список обозначений приведен в приложении). Таким образом,
VA=VE-VD
Сложность этого метода заключается в том, что объем анатомического мертвого пространства измерить трудно, хотя с небольшой ошибкой можно принять его равным определенной величине.
1) Следует подчеркнуть, что VA —это количество воздуха, поступающее в альвеолы при одном вдохе, а не общее количество альвеолярного воздуха в легких.
Рис. 2.5. Воздух, покидающий легкие при выдохе (дыхательный объем, VD), поступает из анатомического мертвого пространства (Vo) и альвеол (va). Густота точек на рисунке соответствует концентрации СО2. F— фракционная концентрация; I—инспираторный воздух; Е—экспираторный воздух. См. для сравнения рис. 1.4 (по J. Piiper с изменениями)
У здоровых людей альвеолярную вентиляцию можно рассчитать также по содержанию СО2 в выдыхаемом воздухе (рис. 2.5). Поскольку в анатомическом мертвом пространстве газообмена не происходит, в конце вдоха в нем не содержится СО2 (ничтожным содержанием СО2 в атмосферном воздухе можно пренебречь). Значит, CO2 поступает в выдыхаемый воздух исключительно из альвеолярного воздуха, откуда имеем где Vco2—объем CO2, выдыхаемый за единицу времени. Следовательно,
VA= Vсо2х100 / % СO2
Величину % С02/100 часто называют фракционной концентрацией С02 и обозначают Fco2. Альвеолярную вентиляцию можно рассчитать, разделив количество выдыхаемого СО2 на концентрацию этого газа в альвеолярном воздухе, которую определяют в последних порциях выдыхаемого воздуха с помощью быстродействующего анализатора С02. Парциальное давление СО2Рсо2) пропорционально концентрации этого газа в альвеолярном воздухе:
Рсо2=Fco2 X K,
где К-константа. Отсюда
VA= VCO2/PCO2 x K
Поскольку у здоровых людей Рсо2 в альвеолярном воздухе и в артериальной крови практически одинаковы, Рсо2 артериальной крови можно использовать для определения альвеолярной вентиляции. Ее взаимосвязь с Рсо2 чрезвычайно важна. Так, если уровень альвеолярной вентиляции снизится вдвое, то (при постоянной скорости образования СО2 в организме) РСО2. в альвеолярном воздухе и артериальной крови возрастет в два раза.
Анатомическое мертвое пространство
Анатомическим мертвым пространством называют объем проводящих воздухоносных путей (рис. 1.3 и 1.4). В норме он составляет около 150 мл, возрастая при глубоком вдохе, так как бронхи растягиваются окружающей их паренхимой легких. Объем мертвого пространства зависит также от размеров тела и позы. Существует приближенное правило, согласно которому у сидящего человека он примерно равен в миллилитрах массе тела в фунтах (1 фунт ==453,6 г).
Объем анатомического мертвого пространства можно измерить по методу Фаулера. При этом обследуемый дышит через систему клапанов и непрерывно измеряется содержание азота с помощью быстродействующего анализатора, забирающего воздух из трубки, начинающейся у рта (рис. 2.6, Л). Когда после вдыхания 100% Оа человек делает выдох, содержание N2 постепенно увеличивается по мере замены воздуха мертвого пространства альвеолярным. В конце выдоха регистрируется практически постоянная концентрация азота, что соответствует чистому альвеолярному воздуху. Этот участок кривой часто называют альвеолярным “плато”, хотя даже у здоровых людей он не совсем горизонтальный, а у больных с поражениями легких может круто идти вверх. При данном методе записывается также объем выдыхаемого воздуха.
Для определения объема мертвого пространства строят график, связывающий содержание N2 с выдыхаемым объемом. Затем на этом графике проводят вертикальную линию таким образом, чтобы площадь А (см. рис. 2.6,5) была равна площади Б. Объем мертвого пространства соответствует точке пересечения этой линии с осью абсцисс. Фактически этот метод дает объем проводящих воздухоносных путей до “средней точки” перехода от мертвого пространства к альвеолярному воздуху.
Рис. 2.6. Измерение объема анатомического мертвого пространства с помощью быстродействующего анализатора N2 по методу Фаулера. А. После вдоха из емкости с чистым кислородом обследуемый делает выдох, и концентрация N2 в выдыхаемом воздухе вначале повышается, а потом остается почти постоянной (кривая при этом практически выходит на плато, соответствующее чистому альвеолярному воздуху). Б. Зависимость концентрации от выдыхаемого объема. Объем мертвого пространства определяется точкой пересечения оси абсцисс с вертикальной пунктирной линией, проведенной таким образом, что площади А и Б равны
Функциональное мертвое пространство
Измерить объем мертвого пространства можно также методом Бора. Из ри2с. 2.5 видно, что выдыхаемый СО2 поступает из альвеолярного воздуха, а не из воздуха мертвого пространства. Отсюда
vt х-fe==va х fa.
Поскольку
vt = va + vd,
т. е.
va=vt-vd,
после подстановки получаем
VT хFE=(VT-VD)-FA,
следовательно,
Поскольку парциальное давление газа пропорционально его содержанию, запишем (уравнение Бора),
где А и Е относятся к альвеолярному и смешанному выдыхаемому воздуху соответственно (см. приложение). При спокойном дыхании отношение объема мертвого пространства к дыхательному объему в норме равно 0,2—0,35. У здоровых людей Рсо2 в альвеолярном воздухе и артериальной крови практически одинаковы, поэтому мы можем записать уравнение Бора следующим образом:
:>
— Рс
аср2
"СО-г
^СОг
Необходимо подчеркнуть, что методами Фаулера и Бора измеряют несколько различные показатели. Первый метод дает объем проводящих дыхательных путей вплоть до того уровня, где поступающий при вдохе воздух быстро смешивается с уже находившимся в легких. Этот объем зависит от геометрии быстро ветвящихся с увеличением суммарного сечения дыхательных путей (см. рис. 1.5) и отражает строение респираторной системы. В связи с этим его называют анатомическим мертвым пространством. По методу же Бора определяется объем тех отделов легких, в которых не происходит удаление СОа из крови; поскольку этот показатель связан с работой органа, он называется функциональным (физиологическим) мертвым пространством. У здоровых лиц эти объемы практически одинаковы. Однако у больных с поражениями легких второй показатель может значительно превышать первый в связи с неравномерностью кровотока и вентиляции в разных отделах легких (см. гл. 5).
Регионарные различия вентиляции легких
До сих пор мы допускали, что вентиляция всех участков здоровых легких одинакова. Однако было обнаружено, что их нижние отделы вентилируются лучше верхних. Показать это можно, попросив обследуемого вдохнуть газовую смесь с радиоактивным ксеноном (рис. 2.7). Когда 133Хе поступает в легкие, испускаемая им радиация проникает через грудную клетку и улавливается закрепленными на ней счетчиками излучения. Так можно измерить объем ксенона, поступающий в разные участки легких.
Рис. 2.7. Оценка регионарных различий в вентиляции с помощью радиоактивного ксенона. Обследуемый вдыхает смесь с этим газом, и интенсивность излучения измеряется счетчиками, помещенными снаружи грудной клетки. Видно, что вентиляция в легких человека в вертикальном положении ослабляется по направлению от нижних отделов к верхним
На рис. 2.7 представлены результаты, полученные с помощью этого метода на нескольких здоровых добровольцах. Видно, что уровень вентиляции на единицу объема выше в области нижних отделов легких и постепенно снижается по направлению к их верхушкам. Показано, что, если обследуемый лежит на спине, разница в вентиляции верхушечных и нижних отделов легких исчезает, однако при этом задние (дорсальные) их участки начинают вентилироваться лучше, чем передние (вентральные). В положении лежа на боку лучше вентилируется находящееся снизу легкое. Причины таких регионарных различий вентиляции разбираются в гл. 7.