Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПОСОБИЕ МСС / Учебное пособие математика МИБД.doc
Скачиваний:
126
Добавлен:
11.06.2015
Размер:
6.64 Mб
Скачать

§1.3. Определители и их свойства

Определители

Определителем (детерминантом) квадратной матрицы n-го порядка называется число

.

þ Обозначения: detA, и |A|.

Строки и столбцы определителя называются рядами.

Определитель второго порядка вычисляется по правилу (1):

. (1)

Определитель третьего порядка вычисляется по правилу (2):

(2).

Правило вычисления определителя третьего порядка следующее. Это алгебраическая сумма шести тройных произведений элементов, стоящих в разных строках и разных столбцах. Со знаком плюс берутся произведения, сомножители которых находятся на главной диагонали и в вершинах треугольников с основаниями, параллельными главной диагонали. Со знаком минус берутся произведения, сомножители которых стоят на другой диагонали и в вершинах треугольников с основаниями, параллельными этой диагонали (рис. 1).

(+) (-)

Рис. 1. Правило вычисления определителя третьего порядка

@ Задача 1. Найти .

Решение: Определитель второго порядка вычисляется по правилу (1): detA = 2·3 – (–3)·4=18.

@ Задача 2. Найти .

Решение: Определитель третьего порядка вычисляется по правилу (2):

detA = 1·3·2 + 2·1·0 + 3·2·1 – 3·3·0 – 2·2·2 – 1·1·1 = 3.

Минор и алгебраическое дополнение

Минором mij некоторого элемента aij определителя n–го порядка называется определитель (n – 1)-го порядка, полученный из исходного определителя путем вычеркивания i-й строки и j-го столбца, на пересечениях которых находится выбранный элемент.

Например, минором элемента a11 определителя третьего порядка является .

Алгебраическим дополнением называется Aij = (– 1)i+j mij. Если сумма индексов алгебраического дополнения i + j четное число, то алгебраические дополнения и миноры совпадают: Aij = mij, а если – нечетное число, то они отличаются знаком: Aij = – mij.

Свойства определителей

  1. Если какой-то ряд состоит из одних нулей, то определитель равен 0.

  2. Определитель не изменится, если его строки заменить столбцами, и наоборот.

  3. При перестановке двух параллельных рядов определитель меняет знак.

  4. Определитель, имеющий два одинаковых ряда, равен нулю.

  5. Общий множитель элементов какого-либо ряда определителя можно вынести за знак определителя.

  6. Если элементы какого-либо ряда определителя представляют собой сумму двух слагаемых, то определитель может быть разложен на сумму двух определителей, с соответствующими слагаемыми этой суммы.

  7. Определитель не изменится, если к элементам одного ряда прибавить соответствующие элементы параллельного ряда, умноженные на любое число.

  8. Определитель равен сумме произведений элементам некоторого ряда на соответствующие им алгебраические дополнения.

Например, определитель третьего порядка равен:

detA = a11A11 + a12A12 + a13A13 = a11m11 a12m12 + a13m13 . (3)

@ Задача 3. Найти .

Решение: Определитель найдем, применяя формулу (3):

Ранг матрицы

Наибольший порядок отличных от нуля детерминантов (миноров) прямоугольной матрицы m n, называется рангом матрицы r, причем r  min(m, n). Для квадратной матрицы ранг r n.

Минор, порядок которого определяет ранг матрицы, называется базисным. У матрицы может быть несколько базисных миноров.

@ Задача 4. Найти ранг матрицы размерности3 4.

Решение: Ранг матрицы r  min(34) = 3. Все детерминанты третьего порядка равны нулю, так как две их строки (вторая и третья) одинаковые (отличаются на постоянный множитель). Отличны от нуля только детерминанты второго порядка, поэтому r = 2.