Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПОСОБИЕ МСС / Учебное пособие математика МИБД.doc
Скачиваний:
136
Добавлен:
11.06.2015
Размер:
6.64 Mб
Скачать

Неявная функция

Если зависимость между x и y выражена уравнением, не разрешенным относительно y, то говорят о неявной функции.

 Обозначение: F(x, y) = 0.

Пример: x² + ex + y + lny = 0. Это уравнение не разрешается относительно y, поэтому функция является неявной.

Вышеприведенные элементарные функции – это явные функции.

Кусочно-линейная функция

При закупке товара, в случае больших партий товара, часто предоставляется оптовая скидка:

.

Такая функция называется кусочно-линейной функцией.

Функции задаются тремя способами: аналитическим, табличным и графическим способами. График линейной функции называется прямой линией, график квадратичной функции – параболой, график обратной зависимости от xгиперболой.

§3.2. Функции нескольких переменных

Функция двух переменных

Величина z называется функцией двух переменных x, y, если каждой паре (x, y) чисел соответствует одно или несколько значений z.

þ Обозначение: z = f(x, y) («зет равно эф от икс, игрек»), (x, y) называются аргументами.

! Примеры: Спрос Q есть функция дохода R и цены p: Q = f(R, p); в термодинамике давление p есть функция температуры T и объема V (уравнение Менделеева-Клапейрона).

Множество M значений (x, y), для которого функция z определена, называется областью определения функции.

Задача 1. Найти область определения функции .

Решение: Функция f(x, y) имеет смысла при x2 + y2 < 9, т.е. областью определения функции является круг с радиусом 3 без точек окружности.

В трехмерном пространстве функции двух переменных соответствует поверхность.

! Примеры: - полусфера,z = x2 + y2 - параболоид.

Функция f(x, y) называется непрерывной в точке M0(x0y0), если соблюдаются следующие два условия:

1. в точке M0 функция имеет определенное значение b,

2. в точке M0 функция имеет предел, равный b .

Если не выполняется хотя бы одно из этих условий, то функция называется разрывной в этой точке.

Функция f(x, y) называется непрерывной в некоторой области, если она непрерывна в каждой точке этой области.

Функция нескольких переменных

þ Обозначение: y = f(x1, x2, xn).

! Примеры: Производственная функция Q = f(K, L, N) является функцией 3 переменных (факторов производства), где Q – выпуск, K - капитал, L - затраты на труд, N - природные ресурсы. Частным случаем является функция Кобба-Дугласа , гдеA характеризует эффективность применяемой технологии, – коэффициент эластичности по капиталовложению.

§3.3. Производная функции

Производная функции

Пусть y = f(x) есть непрерывная функция аргумента x, определенная в промежутке (ab), и пусть x – какая-то точка этого промежутка. Дадим аргументу приращение Dx, тогда функция получит приращение, равное Dy = f(x + Dx) – f(x). Если функция непрерывная и приращение аргумента бесконечно малая величина, то приращение функции тоже бесконечно малая величина.

Предел, к которому стремится отношение приDx® 0, называется производной функции:

.

þ Обозначение: f¢(x) («эф штрих икс»), y¢ («игрек штрих»)

! Примеры производных линейной функции y = x и квадратичной функции y = x2.

.

.

Производная степенной функции равна произведению степени на степенную функцию, у которой показатель на единицу меньше:

. (1)

Производные функций y = x, y = x2 являются частными случаями формулы (1), при = 1; 2. Производные 1¢ = 0, ,,тоже являются частными случаями формулы (1), приn = 0; ½; 3; 1.

! Пример: Производная тригонометрической функции y = sinx равна

. (2)

Таким же образом находится производная функции cosx:

(cosx)¢ = – sinx. (3)

! Пример: Производная экспоненциальной функции y = ex равна

. (4)