Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УИР / УИР.docx
Скачиваний:
26
Добавлен:
11.06.2015
Размер:
128.38 Кб
Скачать

6. Понятие Data Mining

Data Mining - это процесс поддержки принятия решений, основанный на поиске в данных скрытых закономерностей (шаблонов информации).

Технологию Data Mining достаточно точно определяет Григорий Пиатецкий-Шапиро (Gregory Piatetsky-Shapiro) - один из основателей этого направления:

Data Mining - это процесс обнаружения в сырых данных ранее неизвестных, нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности.

Суть и цель технологии Data Mining можно охарактеризовать так: это технология, которая предназначена для поиска в больших объемах данных неочевидных, объективных и полезных на практике закономерностей.

Неочевидных - это значит, что найденные закономерности не обнаруживаются стандартными методами обработки информации или экспертным путем.

Объективных - это значит, что обнаруженные закономерности будут полностью соответствовать действительности, в отличие от экспертного мнения, которое всегда является субъективным.

Практически полезных - это значит, что выводы имеют конкретное значение, которому можно найти практическое применение.

Знания - совокупность сведений, которая образует целостное описание, соответствующее некоторому уровню осведомленности об описываемом вопросе, предмете, проблеме и т.д.

Использование знаний (knowledge deployment) означает действительное применение найденных знаний для достижения конкретных преимуществ (например, в конкурентной борьбе за рынок).

Еще несколько определений понятия Data Mining.

Data Mining - это процесс выделения из данных неявной и неструктурированной информации и представления ее в виде, пригодном для использования.

Data Mining - это процесс выделения, исследования и моделирования больших объемов данных для обнаружения неизвестных до этого структур (patterns) с целью достижения преимуществ в бизнесе (определение SAS Institute).

Data Mining - это процесс, цель которого - обнаружить новые значимые корреляции, образцы и тенденции в результате просеивания большого объема хранимых данных с использованием методик распознавания образцов плюс применение статистических и математических методов (определение Gartner Group).

В основу технологии Data Mining положена концепция шаблонов (patterns), которые представляют собой закономерности, свойственные подвыборкам данных, кои могут быть выражены в форме, понятной человеку.

"Mining" по-английски означает "добыча полезных ископаемых", а поиск закономерностей в огромном количестве данных действительно сродни этому процессу.

Цель поиска закономерностей - представление данных в виде, отражающем искомые процессы. Построение моделей прогнозирования также является целью поиска закономерностей.

Примеры заданий на такой поиск при использовании Data Mining приведены в таблице 1.

Таблица 1. Примеры формулировок задач при использовании методов OLAP и Data Mining

OLAP

Data Mining

Каковы средние показатели травматизма для курящих и некурящих?

Встречаются ли точные шаблоны в описаниях людей, подверженных повышенному травматизму?

Каковы средние размеры телефонных счетов существующих клиентов в сравнении со счетами бывших клиентов (отказавшихся от услуг телефонной компании)?

Имеются ли характерные портреты клиентов, которые, по всей вероятности, собираются отказаться от услуг телефонной компании?

Какова средняя величина ежедневных покупок по украденной и не украденной кредитной карточке?

Существуют ли стереотипные схемы покупок для случаев мошенничества с кредитными карточками?

Важное положение Data Mining — нетривиальность разыскиваемых шаблонов. Это означает, что найденные шаблоны должны отражать неочевидные, неожиданные (unexpected) регулярности в данных, составляющие так называемые скрытые знания (hidden knowledge). К обществу пришло понимание, что сырые данные (raw data) содержат глубинный пласт знаний, при грамотной раскопке которого могут быть обнаружены настоящие самородки (рис.2).

Соседние файлы в папке УИР