Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТПР_2012 / ПособиеТПР.doc
Скачиваний:
194
Добавлен:
11.06.2015
Размер:
1.54 Mб
Скачать

Матрица решений

j

хi

1

2

n

х1

f11

f12

f1n

х2

f21

f22

f2n

хm

fm1

fm2

fmn

При выборе наилучшего решения надо учитывать все возможные последствиявариантахi.

Пример 1. Предприятие решает вопрос: развивать ему малые мощности данного производства (альтернатива х1), средние мощности (альтернатива х2) или крупные мощности (альтернатива х3). Прибыль предприятия будет зависеть от того, какой спрос будет в будущем на продукцию данного предприятия – низкий (НС), средний (СС) или высокий (ВС).

Для формального представления ситуации необходимо выбрать целевую функцию и вычислить ее значения для каждой альтернативы при всех возможных значениях внешних факторов (уровней спроса).

В качестве целевой функции в данном случае можно выбрать годовую прибыль предприятия, т.е. разницу между доходом от проданной продукции и затратами. Очевидно, лучшим решением будет то, которому соответствует максимальная прибыль.

Составим матрицу решений для данной задачи (табл.2). Значения целевой функции приведены в условных единицах.

Таблица 2

Матрица решений для примера 1

НС

СС

ВС

Х1

100

100

100

Х2

70

120

120

Х3

-20

30

200

Однако анализ альтернатив затруднен наличием внешних факторов, в результате чего в одних условиях (НС) лучше альтернатива х1, в других (СС) – х2, в третьих (ВС) – х3.

Чтобы избавиться от такого рода неопределенности, можно ввести подходящие оценочные (целевые) функции, назначение которых – поставить в соответствие каждой альтернативе только одно число. При этом матрица решенийсведется к одному столбцу, который назовемвектором результатовfir: любому варианту хiприписывается некоторый результатfir, являющийся функцией всех последствий этого решения. Другими словами, каждой альтернативе будет соответствовать не строка результатов в матрице, а один результат -fr(xi).

Эта функция может иметь разный вид в зависимости от позиции ЛПР. В теории принятия решений различают следующие основныепозиции:

- оптимистическую,

- пессимистическую,

- позиции компромисса и

- нейтралитета.

Как же анализировать матрицу решений с этих позиций ЛПР?

Оптимист старается не принимать во внимание плохие результаты, надеясь на наступление наиболее благоприятных внешних условий. Поэтому в качестве компоненты вектора результатов, соответствующей каждому решению, он назначает максимальный результат, т.е. максимальное значение строки:

- это оптимистическая позиция, илипозиция азартного игрока.

Для пессимиставполне логично вспомнить закон Мэрфи: “Если несчастье может случиться, оно случится обязательно”. Эта позиция оправдана там, где риск недопустим. Выбирая решение в соответствии с этой позицией, мы гарантируем себе результат, не меньший, чем выбранный. А если повезет, и реализуются более выгодные внешние условия, то можно получить максимальный в данной строке результат. Вектор результатов записывается следующим образом:

- этопессимистическаяпозиция.

Позиция компромисса учитывает как максимальный, так и минимальный результаты строки:

Формируя желаемый результат в таком виде, мы исходим из компромисса между оптимистической и пессимистической позициями.

Позиция нейтралитета учитывает все последствия принимаемого решения и поэтому выглядит следующим образом:

.

Соседние файлы в папке ТПР_2012