- •Теория вероятностей и математическая статистика
- •Случайные события
- •Действия над событиями
- •Свойства операций над событиями
- •Задачи, рассмотренные на лекции и семинаре. Тема 1. События. Основные операции над событиями Лекция 1
- •Семинар 1
- •Домашнее задание 1 – Тема 1.
- •Свойства относительной частоты
- •Свойства статистической вероятности
- •Классическое определение вероятности
- •Свойства «классической» вероятности
- •Полезный алгоритм
- •Задачи, рассмотренные на лекции и семинаре. Тема 2 Лекция 2
- •Семинар 2
- •Домашнее задание 2 – Тема 2.
- •Классическое определение вероятности
- •Домашнее задание 2 – Тема 2.
- •Классическое определение вероятности
- •Тема 2.1. Элементы комбинаторики. Правило суммы и правило произведения. – 4 часа 2 часа лекции, 2 часа семинарское занятие Элементы комбинаторики
- •Правило умножения
- •Правило сложения (суммы)
- •Задачи, рассмотренные на Лекции и Семинаре 2.1.
- •Домашнее задание 2.1 – Тема 2.1 Элементы комбинаторики: Правило Суммы, Правило Произведения
- •Тема 3. Элементы комбинаторики. Понятие о «схеме выбора». Схема выбора без возвращения: Перестановки, Размещения, Сочетания. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Соединения. Виды соединений
- •Перестановки
- •Размещения
- •Сочетания
- •Свойства Сочетаний (биномиальных коэффициентов)
- •Семинар 3
- •Домашнее задание 3 – Тема 3. Элементы комбинаторики: Перестановки, Размещения, Сочетания
- •Тема 4. Элементы комбинаторики. Схема выбора с возвращением: Размещения, Сочетания, Перестановки с повторением – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Размещения с повторениями
- •Сочетания с повторениями
- •Перестановки с повторениями
- •Задачи, рассмотренные на лекции и семинаре. Тема 4.
- •Лекция 4
- •Семинар 4
- •Домашнее задание 4 - Тема 4.
- •Тема 5. Геометрическое определение вероятности. Субъективная вероятность. Примеры вычисления вероятностей. – 4 часа: 2 часа лекции, 2 часа семинарское занятие Субъективная вероятность
- •Геометрическое определение вероятности
- •Свойства геометрической вероятности
- •Задачи, рассмотренные на лекции и семинаре 5. Тема 5. Геометрическая вероятность
- •Домашнее задание 5 - Тема 5. Геометрическая вероятность
- •Тема 6. Независимость событий. Вероятность произведения событий. Вероятность суммы событий. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Независимость событий
- •Тема 6. Задачи, рассмотренные на лекции и семинаре 6 Лекция 6
- •Семинар 6 Дополнительное задание
- •Домашнее задание 6 – Тема 6. Формулы вероятности суммы и произведения событий
- •Тема 7. Независимость событий. Условные вероятности. – 4 часа: 2 часа лекции, 2 часа семинарское занятие Условные вероятности
- •Полезный алгоритм
- •Тема 7. Независимость событий. Условная вероятность Задачи, рассмотренные на лекции и семинаре 7 Лекция 7
- •Семинар 7
- •Тема 8. Формула полной вероятности. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Тема 8. Задачи, рассмотренные на Лекции 8
- •Тема 8. - Домашнее задание 8. Формула полной вероятности
- •Тема 9. Формула Байеса (формула гипотез, формула апостериорной вероятности). – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Задачи, рассмотренные на Лекции и Семинаре 9
- •Домашнее задание 9. – Тема 9 – Теорема Байеса
- •Тема 10. Схема повторных независимых испытаний с двумя исходами. Схема Бернулли. Теорема и Формула Бернулли. - 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Формула Бернулли
- •Случай нескольких исходов
- •Вероятность появления рассматриваемого события не менее m раз
- •Задачи, рассмотренные на Лекции и Семинаре 10. Тема 10. Формула Бернулли Лекция 10
- •Семинар 10
- •Домашнее задание 10 – Тема 10. Схема Бернулли
- •Тема 11. Приближенные вычисления в схеме Бернулли. Формулы Пуассона, Муавра – Лапласа. Алгоритмы вычислений. Гауссиана. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Формула Пуассона
- •Алгоритм использования функции Гаусса в приближенных вычислениях
- •Алгоритм использования функции ф(х) в приближенных вычислениях
- •Сокращенная таблица значений функции плотности и интегральной функции ф(х)
- •Задачи, рассмотренные на Лекции.
- •Тема 11. - Формулы Пуассона и Муавра – Лапласа
- •Домашнее задание 11. -Тема 11. Формулы Пуассона и Муавра – Лапласа. Кривая вероятностей (Гауссиана). Закон больших чисел
- •Тема 12. Бином Ньютона. Биномиальные коэффициенты. Свойства биномиальных коэффициентов. – 4 часа: 2 часа лекции, 2 часа семинарское занятие Свойства Сочетаний (биномиальных коэффициентов)
- •Треугольник Паскаля
- •Домашнее задание 12 – Тема 12. Бином Ньютона
- •Дискретная случайная величина
- •Закон распределения дискретной случайной величины
- •Математические операции над дискретными случайными величинами
- •Задачи, рассмотренные на Лекции и Семинаре. Тема 13
- •Домашнее задание 13 – Тема 13. Случайная величина (св).
- •Тема 14. Числовые характеристики случайной величины. «Меры положения»: среднее арифметическое, среднее геометрическое, мода, медиана. «Меры рассеяния»: дисперсия, эксцесс, асимметрия.
- •«Меры положения»
- •1. Средняя арифметическая величина. Понятие средней арифметической
- •Свойства средней величины
- •2. Мода
- •3. Медиана
- •Вариация массовых явлений. «Меры рассеяния»
- •4. Размах (интервал изменения)
- •5. Математическое ожидание
- •Свойства математического ожидания
- •6. Дисперсия и среднеквадратическое (стандартное) отклонение
- •Алгоритм вычисления дисперсии
- •Свойства дисперсии
- •7. Коэффициент вариации
- •Моменты распределения и показатели его формы. Центральные моменты распределения
- •9. Коэффициент асимметрии
- •10. Коэффициент эксцесса
- •Задачи, рассмотренные на Лекции и Семинаре 14
- •Домашнее задание 14. Тема 14 – Числовые характеристики случайной величины. Закон распределения св
- •Плотность распределения
- •Сходство и различия между законом распределения и плотностью распределения
- •Свойства плотности вероятности
- •Нормальный закон распределения
- •Свойства кривой вероятностей
- •Понятие о биномиальной случайной величине
- •Раздел II
- •Вопросы для контроля
- •Вопросы к зачету по теории вероятностей и математической статистике
- •Рекомендуемая литература
Задачи, рассмотренные на лекции и семинаре. Тема 2 Лекция 2
Задача 1-Т2. Во время тренировки по стрельбе по цели было сделано 30 выстрелов и зарегистрировано 26 попаданий. Какова относительная частота попадания по цели в данной серии выстрелов?
Задача 2–Т2 (для самостоятельного решения). Проверено 100 деталей. Среди них оказалось 80 стандартных. Какова относительная частота появления стандартной детали?
Задача 3-Т2. Проводилась серия испытаний с подбрасыванием гайки. Пусть А = {гайка падает плашмя}. Результаты заносились в таблицу.
Число испытаний (n) |
10 |
50 |
100 |
250 |
500 |
1000 |
Частота падения гайки плашмя (m) |
7 |
33 |
67 |
155 |
316 |
627 |
Относительная частота падения гайки плашмя |
|
|
|
|
|
|
Задача 4-Т2. В некотором районе зарегистрировано рождение с начала года 1248 младенцев, из них 645 мальчиков. Какова вероятность рождения мальчика в данном районе?
Задача 5-Т2. Подсчитано, что в русском языке буква «А» встречается с вероятностью 0,075, буква «Б» - с вероятностью 0,017, а буква «В» - с вероятностью 0,046.
Какова вероятность того, что наугад взятая из текста буква окажется «Б» или «В»?
Задача 6-Т2. Из полного набора костяшек домино наудачу выбирается одна костяшка. Какова вероятность появления костяшки, сумма очков на которой равна 6?
Задача 7-Т2. Поверхность рулетки разделена диаметрами на 4 равные части. Найти вероятность того, что раскрученная стрелка рулетки остановится на секторе 3.
Задача 8-Т2. Найти вероятность появления при одном бросании игральной кости числа очков, большего 4.
Задача 9-Т2. Датчик случайных чисел генерирует двузначное случайное число. Какова вероятность того, что сгенерированное число делится на 5?
Задача 10–Т2. Доказать, опираясь на аксиомы теории вероятностей, что
.
Задача 11-Т2. Одновременно бросаются два игральных кубика (игральные кости). Найти вероятность того, что суммарное число выпавших очков меньше 5.
Задача 12-Т2 (для самостоятельного решения). Если подбросить одновременно три игральные кости, то сколько имеется вариантов – комбинаций выброшенных очков?
Задача 13-Т2. Пусть из пункта А в пункт В имеется 5 дорог, а из пункта В в пункт С – 6 дорог.
1) Сколько существует различных вариантов проезда из А в С?
2) Сколько существует различных вариантов проезда из пункта А в пункт В и обратно?
3) Сколько существует различных вариантов проезда из пункта А в пункт В и обратно при условии, что дороги туда и обратно будут разными?
Задача 14-Т2. Сколько трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5, если
а) цифры не повторяются?
б) цифры могут повторяться?
Задача 15-Т2. Сколько различных трехзначных чисел можно составить из цифр 0, 2, 3, 5 и 7, если
а) цифры не повторяются?
б) цифры могут повторяться?
Задача 16-Т2. В студенческой группе 14 девушек и 6 юношей. Сколькими способами для выполнения различных упражнений в парах можно выбрать студентов одного пола?
Задача 17-Т3. В ящике лежат шары: 4 белых, 10 красных, 8 зеленых, 9 коричневых. Из ящика вынимают один шар. Определить, какова вероятность, что шар окажется цветным.