- •Теория вероятностей и математическая статистика
- •Случайные события
- •Действия над событиями
- •Свойства операций над событиями
- •Задачи, рассмотренные на лекции и семинаре. Тема 1. События. Основные операции над событиями Лекция 1
- •Семинар 1
- •Домашнее задание 1 – Тема 1.
- •Свойства относительной частоты
- •Свойства статистической вероятности
- •Классическое определение вероятности
- •Свойства «классической» вероятности
- •Полезный алгоритм
- •Задачи, рассмотренные на лекции и семинаре. Тема 2 Лекция 2
- •Семинар 2
- •Домашнее задание 2 – Тема 2.
- •Классическое определение вероятности
- •Домашнее задание 2 – Тема 2.
- •Классическое определение вероятности
- •Тема 2.1. Элементы комбинаторики. Правило суммы и правило произведения. – 4 часа 2 часа лекции, 2 часа семинарское занятие Элементы комбинаторики
- •Правило умножения
- •Правило сложения (суммы)
- •Задачи, рассмотренные на Лекции и Семинаре 2.1.
- •Домашнее задание 2.1 – Тема 2.1 Элементы комбинаторики: Правило Суммы, Правило Произведения
- •Тема 3. Элементы комбинаторики. Понятие о «схеме выбора». Схема выбора без возвращения: Перестановки, Размещения, Сочетания. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Соединения. Виды соединений
- •Перестановки
- •Размещения
- •Сочетания
- •Свойства Сочетаний (биномиальных коэффициентов)
- •Семинар 3
- •Домашнее задание 3 – Тема 3. Элементы комбинаторики: Перестановки, Размещения, Сочетания
- •Тема 4. Элементы комбинаторики. Схема выбора с возвращением: Размещения, Сочетания, Перестановки с повторением – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Размещения с повторениями
- •Сочетания с повторениями
- •Перестановки с повторениями
- •Задачи, рассмотренные на лекции и семинаре. Тема 4.
- •Лекция 4
- •Семинар 4
- •Домашнее задание 4 - Тема 4.
- •Тема 5. Геометрическое определение вероятности. Субъективная вероятность. Примеры вычисления вероятностей. – 4 часа: 2 часа лекции, 2 часа семинарское занятие Субъективная вероятность
- •Геометрическое определение вероятности
- •Свойства геометрической вероятности
- •Задачи, рассмотренные на лекции и семинаре 5. Тема 5. Геометрическая вероятность
- •Домашнее задание 5 - Тема 5. Геометрическая вероятность
- •Тема 6. Независимость событий. Вероятность произведения событий. Вероятность суммы событий. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Независимость событий
- •Тема 6. Задачи, рассмотренные на лекции и семинаре 6 Лекция 6
- •Семинар 6 Дополнительное задание
- •Домашнее задание 6 – Тема 6. Формулы вероятности суммы и произведения событий
- •Тема 7. Независимость событий. Условные вероятности. – 4 часа: 2 часа лекции, 2 часа семинарское занятие Условные вероятности
- •Полезный алгоритм
- •Тема 7. Независимость событий. Условная вероятность Задачи, рассмотренные на лекции и семинаре 7 Лекция 7
- •Семинар 7
- •Тема 8. Формула полной вероятности. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Тема 8. Задачи, рассмотренные на Лекции 8
- •Тема 8. - Домашнее задание 8. Формула полной вероятности
- •Тема 9. Формула Байеса (формула гипотез, формула апостериорной вероятности). – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Задачи, рассмотренные на Лекции и Семинаре 9
- •Домашнее задание 9. – Тема 9 – Теорема Байеса
- •Тема 10. Схема повторных независимых испытаний с двумя исходами. Схема Бернулли. Теорема и Формула Бернулли. - 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Формула Бернулли
- •Случай нескольких исходов
- •Вероятность появления рассматриваемого события не менее m раз
- •Задачи, рассмотренные на Лекции и Семинаре 10. Тема 10. Формула Бернулли Лекция 10
- •Семинар 10
- •Домашнее задание 10 – Тема 10. Схема Бернулли
- •Тема 11. Приближенные вычисления в схеме Бернулли. Формулы Пуассона, Муавра – Лапласа. Алгоритмы вычислений. Гауссиана. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Формула Пуассона
- •Алгоритм использования функции Гаусса в приближенных вычислениях
- •Алгоритм использования функции ф(х) в приближенных вычислениях
- •Сокращенная таблица значений функции плотности и интегральной функции ф(х)
- •Задачи, рассмотренные на Лекции.
- •Тема 11. - Формулы Пуассона и Муавра – Лапласа
- •Домашнее задание 11. -Тема 11. Формулы Пуассона и Муавра – Лапласа. Кривая вероятностей (Гауссиана). Закон больших чисел
- •Тема 12. Бином Ньютона. Биномиальные коэффициенты. Свойства биномиальных коэффициентов. – 4 часа: 2 часа лекции, 2 часа семинарское занятие Свойства Сочетаний (биномиальных коэффициентов)
- •Треугольник Паскаля
- •Домашнее задание 12 – Тема 12. Бином Ньютона
- •Дискретная случайная величина
- •Закон распределения дискретной случайной величины
- •Математические операции над дискретными случайными величинами
- •Задачи, рассмотренные на Лекции и Семинаре. Тема 13
- •Домашнее задание 13 – Тема 13. Случайная величина (св).
- •Тема 14. Числовые характеристики случайной величины. «Меры положения»: среднее арифметическое, среднее геометрическое, мода, медиана. «Меры рассеяния»: дисперсия, эксцесс, асимметрия.
- •«Меры положения»
- •1. Средняя арифметическая величина. Понятие средней арифметической
- •Свойства средней величины
- •2. Мода
- •3. Медиана
- •Вариация массовых явлений. «Меры рассеяния»
- •4. Размах (интервал изменения)
- •5. Математическое ожидание
- •Свойства математического ожидания
- •6. Дисперсия и среднеквадратическое (стандартное) отклонение
- •Алгоритм вычисления дисперсии
- •Свойства дисперсии
- •7. Коэффициент вариации
- •Моменты распределения и показатели его формы. Центральные моменты распределения
- •9. Коэффициент асимметрии
- •10. Коэффициент эксцесса
- •Задачи, рассмотренные на Лекции и Семинаре 14
- •Домашнее задание 14. Тема 14 – Числовые характеристики случайной величины. Закон распределения св
- •Плотность распределения
- •Сходство и различия между законом распределения и плотностью распределения
- •Свойства плотности вероятности
- •Нормальный закон распределения
- •Свойства кривой вероятностей
- •Понятие о биномиальной случайной величине
- •Раздел II
- •Вопросы для контроля
- •Вопросы к зачету по теории вероятностей и математической статистике
- •Рекомендуемая литература
Теория вероятностей и математическая статистика
Учебные задачи курса
В процессе изучения дисциплины студенты должны:
- приобрести знание основных понятий и фактов теории вероятностей, теории случайных процессов и математической статистики,
- овладеть современной терминологией в данных областях;
- научиться практически решать вероятностные задачи, квалифицированно производить статистическую обработку экспериментальных данных.
Дисциплины, изучение которых необходимо для усвоения курса
Для успешного овладения данной дисциплиной студентам необходимо освоить следующие предметы:
- «Математический анализ» (особенно разделы - дифференцирование функций одной и многих переменных, интегрирование, теория рядов, преобразование Фурье, определенные и кратные интегралы, несобственные интегралы, специальные функции, элементы теории функциональных пространств),
- «Высшая алгебра» (матрицы и определители, линейные пространства, решение систем линейных уравнений).
Раздел I
Элементарная теория вероятностей и случайных процессов
Тема 0. Основные этапы становления теории вероятностей и математической статистики. – 4 часа лекций
В истории развития теории вероятностей выделяют следующие этапы.
1. Предыстория теории вероятностей. Начало этого периода «теряется в дали веков», ставились и решались примитивные задачи, которые позже будут отнесены к теории вероятностей. Никаких специальных методов в этот период не возникает, идет накопление материала. Этот период заканчивается в 16 веке работами Кардано, Пачоли, Н. Тарталья и др.
2. Возникновение теории вероятностей как науки. В этот период вырабатываются первые специфические понятия, такие, как математическое ожидание. Устанавливаются первые теоремы – теоремы сложения и умножения вероятностей. Начало этого периода связано с именами Б. Паскаля, П. Ферма, Х. Гюйгенса. Этот период продолжается от середины 17 века до начала 18 века. В это время теория вероятностей находит свои первые применения в демографии, страховом деле, в оценке ошибок наблюдения.
3. Следующий период начинается с появления работы Я. Бернулли «Искусство предположения» (1713). Это первая работа, в которой была строго доказана предельная теорема – простейший случай закона больших чисел. Теорема Бернулли дала возможность широко применять теорию вероятностей к статистике. К этому периоду относятся работы А. Муавра, П.-С. Лапласа, Ф. Гаусса, С.-Д. Пуассона и др. Теория вероятностей начинает применяться в различных областях естествознания. Центральной проблемой этого периода является доказательство предельных теорем.
4. Следующий период развития теории вероятностей связан, прежде всего, с русской (Петербургской) школой. Здесь следует назвать имена П.Л. Чебышева, А.А. Маркова, А.М. Ляпунова. В этот период распространение закона больших чисел и центральной предельной теоремы достигает своих естественных границ. Законы теории вероятностей стали применяться к зависимым случайным величинам. Все это дало возможность приложения теории вероятностей ко многим разделам естествознания, в первую очередь – физике. Возникает статистическая физика, которая развивается во взаимосвязи с теорией вероятности.
5. Современный период теории вероятностей начался с установления аксиоматики. Этого в первую очередь требовала практика, так как для успешного применения теории вероятностей к физике, биологии и другим естественным наукам, а также технике и военному делу необходимо было уточнить и привести в стройную систему ее основные части и понятия. Благодаря аксиоматике теория вероятностей стала абстрактно-дедуктивной математической дисциплиной, тесно связанной с теорией множеств, а через нее – с другими математическими дисциплинами.
Это обусловило необычайную широту использования теории вероятностей, начиная от хозяйственно-прикладных вопросов и кончая самыми «тонкими» проблемами кибернетики. Первые работы этого периода связаны с работами Э. Бореля, С.Н. Бернштейна, Мизеса. Окончательное установление аксиоматики произошло в 30-е годы 20 века, когда была опубликована и получила всеобщее признание аксиоматика А.Н. Колмогорова.
В последние годы намечаются новые подходы к основным понятиям теории вероятностей, в том числе и с позиций теории информации, теории игр.