
- •Теория вероятностей и математическая статистика
- •Случайные события
- •Действия над событиями
- •Свойства операций над событиями
- •Задачи, рассмотренные на лекции и семинаре. Тема 1. События. Основные операции над событиями Лекция 1
- •Семинар 1
- •Домашнее задание 1 – Тема 1.
- •Свойства относительной частоты
- •Свойства статистической вероятности
- •Классическое определение вероятности
- •Свойства «классической» вероятности
- •Полезный алгоритм
- •Задачи, рассмотренные на лекции и семинаре. Тема 2 Лекция 2
- •Семинар 2
- •Домашнее задание 2 – Тема 2.
- •Классическое определение вероятности
- •Домашнее задание 2 – Тема 2.
- •Классическое определение вероятности
- •Тема 2.1. Элементы комбинаторики. Правило суммы и правило произведения. – 4 часа 2 часа лекции, 2 часа семинарское занятие Элементы комбинаторики
- •Правило произведения
- •Правило сложения (суммы)
- •Задачи, рассмотренные на Лекции и Семинаре 2.1.
- •Домашнее задание 2.1 – Тема 2.1 Элементы комбинаторики: Правило Суммы, Правило Произведения
- •Тема 3. Элементы комбинаторики. Понятие о «схеме выбора». Схема выбора без возвращения: Перестановки, Размещения, Сочетания. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Соединения. Виды соединений
- •Перестановки
- •Размещения
- •Сочетания
- •Свойства Сочетаний (биномиальных коэффициентов)
- •Семинар 3
- •Домашнее задание 3 – Тема 3. Элементы комбинаторики: Перестановки, Размещения, Сочетания
- •Тема 4. Элементы комбинаторики. Схема выбора с возвращением: Размещения, Сочетания, Перестановки с повторением – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Размещения с повторениями
- •Сочетания с повторениями
- •Перестановки с повторениями
- •Задачи, рассмотренные на лекции и семинаре. Тема 4.
- •Лекция 4
- •Семинар 4
- •Домашнее задание 4 - Тема 4.
- •Тема 5. Геометрическое определение вероятности. Субъективная вероятность. Примеры вычисления вероятностей. – 4 часа: 2 часа лекции, 2 часа семинарское занятие Субъективная вероятность
- •Геометрическое определение вероятности
- •Свойства геометрической вероятности
- •Задачи, рассмотренные на лекции и семинаре 5. Тема 5. Геометрическая вероятность
- •Домашнее задание 5 - Тема 5. Геометрическая вероятность
- •Тема 6. Независимость событий. Вероятность произведения событий. Вероятность суммы событий. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Независимость событий
- •Тема 6. Задачи, рассмотренные на лекции и семинаре 6 Лекция 6
- •Семинар 6 Дополнительное задание
- •Домашнее задание 6 – Тема 6. Формулы вероятности суммы и произведения событий
- •Тема 7. Независимость событий. Условные вероятности. – 4 часа: 2 часа лекции, 2 часа семинарское занятие Условные вероятности
- •Полезный алгоритм
- •Тема 7. Независимость событий. Условная вероятность Задачи, рассмотренные на лекции и семинаре 7 Лекция 7
- •Семинар 7
- •Тема 8. Формула полной вероятности. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Тема 8. Задачи, рассмотренные на Лекции 8
- •Тема 8. - Домашнее задание 8. Формула полной вероятности
- •Тема 9. Формула Байеса (формула гипотез, формула апостериорной вероятности). – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Задачи, рассмотренные на Лекции и Семинаре 9
- •Домашнее задание 9. – Тема 9 – Теорема Байеса
- •Тема 10. Схема повторных независимых испытаний с двумя исходами. Схема Бернулли. Теорема и Формула Бернулли. - 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Формула Бернулли
- •Случай нескольких исходов
- •Вероятность появления рассматриваемого события не менее m раз
- •Задачи, рассмотренные на Лекции и Семинаре 10. Тема 10. Формула Бернулли Лекция 10
- •Семинар 10
- •Домашнее задание 10 – Тема 10. Схема Бернулли
- •Тема 11. Приближенные вычисления в схеме Бернулли. Формулы Пуассона, Муавра – Лапласа. Алгоритмы вычислений. Гауссиана. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Формула Пуассона
- •Алгоритм использования функции Гаусса в приближенных вычислениях
- •Алгоритм использования функции ф(х) в приближенных вычислениях
- •Задачи, рассмотренные на Лекции.
- •Тема 11. - Формулы Пуассона и Муавра – Лапласа
- •Домашнее задание 11. -Тема 11. Формулы Пуассона и Муавра – Лапласа. Кривая вероятностей (Гауссиана). Закон больших чисел
- •Тема 12. Бином Ньютона. Биномиальные коэффициенты. Свойства биномиальных коэффициентов. – 4 часа: 2 часа лекции, 2 часа семинарское занятие Свойства Сочетаний (биномиальных коэффициентов)
- •Треугольник Паскаля
- •Задачи, рассмотренные на Лекции 12. Бином Ньютона
- •Домашнее задание 12 – Тема 12. Бином Ньютона
- •Дискретная случайная величина
- •Закон распределения дискретной случайной величины
- •Математические операции над дискретными случайными величинами
- •Задачи, рассмотренные на Лекции и Семинаре. Тема 13
- •Домашнее задание 13 – Тема 13. Случайная величина (св).
- •Тема 14. Числовые характеристики случайной величины. «Меры положения»: среднее арифметическое, среднее геометрическое, мода, медиана. «Меры рассеяния»: дисперсия, эксцесс, асимметрия.
- •«Меры положения»
- •1. Средняя арифметическая величина. Понятие средней арифметической
- •Свойства средней величины
- •2. Мода
- •3. Медиана
- •Вариация массовых явлений. «Меры рассеяния»
- •4. Размах (интервал изменения)
- •5. Математическое ожидание
- •Свойства математического ожидания
- •6. Дисперсия и среднеквадратическое (стандартное) отклонение
- •Алгоритм вычисления дисперсии
- •Свойства дисперсии
- •7. Коэффициент вариации
- •Моменты распределения и показатели его формы. Центральные моменты распределения
- •9. Коэффициент асимметрии
- •10. Коэффициент эксцесса
- •Задачи, рассмотренные на Лекции и Семинаре 14
- •Домашнее задание 14. Тема 14 – Числовые характеристики случайной величины. Закон распределения св
- •Плотность распределения
- •Сходство и различия между законом распределения и плотностью распределения
- •Свойства плотности вероятности
- •Нормальный закон распределения
- •Свойства кривой вероятностей
- •Тема 16 – Понятие о биномиальной случайной величине. Основные характеристики биномиального распределения – 2 часа лекции Понятие о биномиальной случайной величине
- •Вопросы для контроля
- •Вопросы к зачету по теории вероятностей и математической статистике
- •Рекомендуемая литература
Алгоритм вычисления дисперсии
Для нахождения дисперсии D данных х1, х2, …, хn измерения следует вычислить:
1)
среднее значение
;
2)
отклонения данных от М,
т.е.
;
3)
квадраты отклонений
отклонений
,
найденных на предыдущем шаге;
4) среднее значение всех квадратов отклонений – это и есть дисперсия D:
;
-
стандартное отклонение.
Свойства дисперсии
1) Дисперсия постоянной величины равна нулю:
D(С) = 0.
2) Постоянный множитель можно выносить за знак дисперсии, предварительно возведя его в квадрат:
D(С·Х) = С2·D(Х).
3) Дисперсия суммы независимых случайных величин равна сумме дисперсий слагаемых:
D(Х1 + Х2 + ... + Хn) = D(Х1) + D(Х2) + ... + D(Хn).
4) Дисперсия разности независимых случайных величин равна сумме дисперсий слагаемых:
D(Х1 - Х2 - ... - Хn) = D(Х1) + D(Х2) + ... + D(Хn).
Определение. Случайная величина, у которой математическое ожидание равно 0, а дисперсия равна 1, называется стандартной или стандартизированной случайной величиной.
Если
имеется СВ Х
с математическом ожиданием
(читается «мю») и стандартным отклонением
.
Тогда случайная величина
является стандартной случайной величиной.
7. Коэффициент вариации
Коэффициент
вариации
случайной величины Х
(обозначается
илиVar(X)
) - это относительная мера вариации:
V(X)
=
.
Оценка интенсивности вариации состоит в сравнении наблюдаемой вариации с некоторой обычной ее интенсивностью, принимаемой за норматив.
Моменты распределения и показатели его формы. Центральные моменты распределения
Математическое ожидание и дисперсия являются частными случаями более общих понятий – моментов СВ.
Определение.
Начальным моментом порядка k
СВ Х называется математическое ожидание
k-й
степени этой величины. Начальный момент
порядка k
обозначается
.
Таким образом, по определению,
.
Для дискретной СВ начальный момент выражается суммой:
.
В
частности,
,
т.е. начальный момент первого порядка
есть математическое ожидание.
Определение.
Центральным
моментом порядка k
СВ Х называется математическое ожидание
величины (Х – М(Х)).
Центральные моменты обозначаются через
(читается – мю).
Таким образом, по определению,
.
В частности,
,
т.е. центральный момент второго порядка есть дисперсия.
При этом:
.
Для дискретной СВ:
.
Среди моментов высших порядков особое значение имеют центральные моменты 3-го и 4-го порядка, называемые соответственно коэффициентами асимметрии и эксцесса.
9. Коэффициент асимметрии
Асимметрия (коэффициент асимметрии) случайной величины (и дискретной, и непрерывной) As(X) - величина, характеризующая степень «скошенности» распределения относительно математического ожидания.
Определение. Коэффициентом асимметрии (коэффициентом «скошенности») дискретной случайной величины Х называется величина Аs(X), вычисляемая по формуле:
.
Если
коэффициент асимметрии
(отрицателен), то либо большая часть
значений случайной величины, либомода
находятся левее математического
ожидания. В этом случае кривая распределения
более полога слева от МоХ.
Если
коэффициент асимметрии
,
то правее. В этом случае кривая
распределения более полога справа отМоХ.
Если распределение по форме близко нормальному закону, то медиана находится между модой и средней величиной, причем ближе к средней, чем к моде.
При правосторонней асимметрии:
.
При левосторонней асимметрии:
.
Для умеренно асимметричных распределений справедливо равенство:
.