
- •Теория вероятностей и математическая статистика
- •Случайные события
- •Действия над событиями
- •Свойства операций над событиями
- •Задачи, рассмотренные на лекции и семинаре. Тема 1. События. Основные операции над событиями Лекция 1
- •Семинар 1
- •Домашнее задание 1 – Тема 1.
- •Свойства относительной частоты
- •Свойства статистической вероятности
- •Классическое определение вероятности
- •Свойства «классической» вероятности
- •Полезный алгоритм
- •Задачи, рассмотренные на лекции и семинаре. Тема 2 Лекция 2
- •Семинар 2
- •Домашнее задание 2 – Тема 2.
- •Классическое определение вероятности
- •Домашнее задание 2 – Тема 2.
- •Классическое определение вероятности
- •Тема 2.1. Элементы комбинаторики. Правило суммы и правило произведения. – 4 часа 2 часа лекции, 2 часа семинарское занятие Элементы комбинаторики
- •Правило произведения
- •Правило сложения (суммы)
- •Задачи, рассмотренные на Лекции и Семинаре 2.1.
- •Домашнее задание 2.1 – Тема 2.1 Элементы комбинаторики: Правило Суммы, Правило Произведения
- •Тема 3. Элементы комбинаторики. Понятие о «схеме выбора». Схема выбора без возвращения: Перестановки, Размещения, Сочетания. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Соединения. Виды соединений
- •Перестановки
- •Размещения
- •Сочетания
- •Свойства Сочетаний (биномиальных коэффициентов)
- •Семинар 3
- •Домашнее задание 3 – Тема 3. Элементы комбинаторики: Перестановки, Размещения, Сочетания
- •Тема 4. Элементы комбинаторики. Схема выбора с возвращением: Размещения, Сочетания, Перестановки с повторением – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Размещения с повторениями
- •Сочетания с повторениями
- •Перестановки с повторениями
- •Задачи, рассмотренные на лекции и семинаре. Тема 4.
- •Лекция 4
- •Семинар 4
- •Домашнее задание 4 - Тема 4.
- •Тема 5. Геометрическое определение вероятности. Субъективная вероятность. Примеры вычисления вероятностей. – 4 часа: 2 часа лекции, 2 часа семинарское занятие Субъективная вероятность
- •Геометрическое определение вероятности
- •Свойства геометрической вероятности
- •Задачи, рассмотренные на лекции и семинаре 5. Тема 5. Геометрическая вероятность
- •Домашнее задание 5 - Тема 5. Геометрическая вероятность
- •Тема 6. Независимость событий. Вероятность произведения событий. Вероятность суммы событий. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Независимость событий
- •Тема 6. Задачи, рассмотренные на лекции и семинаре 6 Лекция 6
- •Семинар 6 Дополнительное задание
- •Домашнее задание 6 – Тема 6. Формулы вероятности суммы и произведения событий
- •Тема 7. Независимость событий. Условные вероятности. – 4 часа: 2 часа лекции, 2 часа семинарское занятие Условные вероятности
- •Полезный алгоритм
- •Тема 7. Независимость событий. Условная вероятность Задачи, рассмотренные на лекции и семинаре 7 Лекция 7
- •Семинар 7
- •Тема 8. Формула полной вероятности. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Тема 8. Задачи, рассмотренные на Лекции 8
- •Тема 8. - Домашнее задание 8. Формула полной вероятности
- •Тема 9. Формула Байеса (формула гипотез, формула апостериорной вероятности). – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Задачи, рассмотренные на Лекции и Семинаре 9
- •Домашнее задание 9. – Тема 9 – Теорема Байеса
- •Тема 10. Схема повторных независимых испытаний с двумя исходами. Схема Бернулли. Теорема и Формула Бернулли. - 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Формула Бернулли
- •Случай нескольких исходов
- •Вероятность появления рассматриваемого события не менее m раз
- •Задачи, рассмотренные на Лекции и Семинаре 10. Тема 10. Формула Бернулли Лекция 10
- •Семинар 10
- •Домашнее задание 10 – Тема 10. Схема Бернулли
- •Тема 11. Приближенные вычисления в схеме Бернулли. Формулы Пуассона, Муавра – Лапласа. Алгоритмы вычислений. Гауссиана. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Формула Пуассона
- •Алгоритм использования функции Гаусса в приближенных вычислениях
- •Алгоритм использования функции ф(х) в приближенных вычислениях
- •Задачи, рассмотренные на Лекции.
- •Тема 11. - Формулы Пуассона и Муавра – Лапласа
- •Домашнее задание 11. -Тема 11. Формулы Пуассона и Муавра – Лапласа. Кривая вероятностей (Гауссиана). Закон больших чисел
- •Тема 12. Бином Ньютона. Биномиальные коэффициенты. Свойства биномиальных коэффициентов. – 4 часа: 2 часа лекции, 2 часа семинарское занятие Свойства Сочетаний (биномиальных коэффициентов)
- •Треугольник Паскаля
- •Задачи, рассмотренные на Лекции 12. Бином Ньютона
- •Домашнее задание 12 – Тема 12. Бином Ньютона
- •Дискретная случайная величина
- •Закон распределения дискретной случайной величины
- •Математические операции над дискретными случайными величинами
- •Задачи, рассмотренные на Лекции и Семинаре. Тема 13
- •Домашнее задание 13 – Тема 13. Случайная величина (св).
- •Тема 14. Числовые характеристики случайной величины. «Меры положения»: среднее арифметическое, среднее геометрическое, мода, медиана. «Меры рассеяния»: дисперсия, эксцесс, асимметрия.
- •«Меры положения»
- •1. Средняя арифметическая величина. Понятие средней арифметической
- •Свойства средней величины
- •2. Мода
- •3. Медиана
- •Вариация массовых явлений. «Меры рассеяния»
- •4. Размах (интервал изменения)
- •5. Математическое ожидание
- •Свойства математического ожидания
- •6. Дисперсия и среднеквадратическое (стандартное) отклонение
- •Алгоритм вычисления дисперсии
- •Свойства дисперсии
- •7. Коэффициент вариации
- •Моменты распределения и показатели его формы. Центральные моменты распределения
- •9. Коэффициент асимметрии
- •10. Коэффициент эксцесса
- •Задачи, рассмотренные на Лекции и Семинаре 14
- •Домашнее задание 14. Тема 14 – Числовые характеристики случайной величины. Закон распределения св
- •Плотность распределения
- •Сходство и различия между законом распределения и плотностью распределения
- •Свойства плотности вероятности
- •Нормальный закон распределения
- •Свойства кривой вероятностей
- •Тема 16 – Понятие о биномиальной случайной величине. Основные характеристики биномиального распределения – 2 часа лекции Понятие о биномиальной случайной величине
- •Вопросы для контроля
- •Вопросы к зачету по теории вероятностей и математической статистике
- •Рекомендуемая литература
Тема 5. Геометрическое определение вероятности. Субъективная вероятность. Примеры вычисления вероятностей. – 4 часа: 2 часа лекции, 2 часа семинарское занятие Субъективная вероятность
Как мы оцениваем вероятность события? Во многих реальных ситуациях определение вероятности уже рассмотренными нами «классическими» способами невозможно, и тогда на первый план выступает понимание вероятности как меры достоверности того или иного события, которая зависит от:
- Репрезентативности выбранной группы,
- Доступности информации,
- Подверженности «ошибкам игрока в казино».
Субъективность в оценке ситуации порождается неопределенностью ситуации.
Геометрическое определение вероятности
Некоторые задачи требуют видоизменения классического определения вероятности для случаев, когда имеется бесконечное множество исходов опыта.
Геометрическое
определение вероятности
применяется в том случае, когда исходы
опыта равновозможны, а пространство
элементарных событий Ω есть бесконечное
несчетное множество. Рассмотрим на
плоскости некоторую область Ω,
имеющую площадь
,
и внутри областиΩ
область D
c
площадью
.
В области Ω случайно выбирается точка Х. Этот выбор можно интерпретировать как бросание точки Х в область Ω. Тем самым пространство исходов испытания можно отождествить с этой областью Ω. Число исходов, очевидно, бесконечно, ведь «в области Ω бесконечное количество точек».
Предполагается, что все точки области Ω равноправны, т.е. все элементарные события равновозможны. Или, что то же самое, брошенная точка может попасть в любую точку области Ω, поскольку все исходы имеют одинаковые шансы осуществиться.
Будем считать, что при этом попадание точки в область Ω – достоверное событие, а в D – случайное. Считается, что вероятность попадания точки в область D пропорциональна площади этой области и не зависит от ее расположения и формы.
Определим
событие
А:
оно заключается в том, что брошенная в
область Ω
точка попадает в область D,
т.е. А
= {брошенная точка попадает в область
D} или, в другой, теоретико-множественной
символике: А
= {Х
D}.
Определение. Геометрическая вероятность события А (по сути - вероятность события А) определяется отношением площади области D к площади области Ω, т.е. следующим образом:
В
этой формуле
и
–
площади областейD
и
Ω
соответственно.
Аналогично определяется геометрическая вероятность, если области D и Ω являются линейными или объемными, т.е. определение идентично при расположении областей на прямой, в трехмерном пространстве. В этом случае вместо площадей фигур в формуле для геометрической вероятности стоят соответственно длина каждой области и / или их объемы.
Все три формулы, определяющие геометрическую вероятность события А, можно записать в виде:
где через mes записана мера области – т.е. её площадь S, объём V, длина l.
Свойства геометрической вероятности
Геометрическая вероятность обладает всеми свойствами, присущими классическому (и другим) определениям вероятности.
1. Геометрическая вероятность любого события заключена между нулем и единицей, т.е.
2. Геометрическая вероятность невозможного события равна нулю, т.е.
Р(Ø) = 0.
3. Геометрическая вероятность достоверного события равна единице, т.е.
Геометрическая
вероятность суммы несовместных событий
равна сумме вероятностей этих событий,
т.е. если
Ø
(
Ø),
то
Что же отличает это определение от классического определения вероятности?
В
отличие от классического определения
вероятности, из того, что
не следует, что
,
т.е.
- достоверное событие.