
- •Теория вероятностей и математическая статистика
- •Случайные события
- •Действия над событиями
- •Свойства операций над событиями
- •Задачи, рассмотренные на лекции и семинаре. Тема 1. События. Основные операции над событиями Лекция 1
- •Семинар 1
- •Домашнее задание 1 – Тема 1.
- •Свойства относительной частоты
- •Свойства статистической вероятности
- •Классическое определение вероятности
- •Свойства «классической» вероятности
- •Полезный алгоритм
- •Задачи, рассмотренные на лекции и семинаре. Тема 2 Лекция 2
- •Семинар 2
- •Домашнее задание 2 – Тема 2.
- •Классическое определение вероятности
- •Домашнее задание 2 – Тема 2.
- •Классическое определение вероятности
- •Тема 2.1. Элементы комбинаторики. Правило суммы и правило произведения. – 4 часа 2 часа лекции, 2 часа семинарское занятие Элементы комбинаторики
- •Правило произведения
- •Правило сложения (суммы)
- •Задачи, рассмотренные на Лекции и Семинаре 2.1.
- •Домашнее задание 2.1 – Тема 2.1 Элементы комбинаторики: Правило Суммы, Правило Произведения
- •Тема 3. Элементы комбинаторики. Понятие о «схеме выбора». Схема выбора без возвращения: Перестановки, Размещения, Сочетания. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Соединения. Виды соединений
- •Перестановки
- •Размещения
- •Сочетания
- •Свойства Сочетаний (биномиальных коэффициентов)
- •Семинар 3
- •Домашнее задание 3 – Тема 3. Элементы комбинаторики: Перестановки, Размещения, Сочетания
- •Тема 4. Элементы комбинаторики. Схема выбора с возвращением: Размещения, Сочетания, Перестановки с повторением – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Размещения с повторениями
- •Сочетания с повторениями
- •Перестановки с повторениями
- •Задачи, рассмотренные на лекции и семинаре. Тема 4.
- •Лекция 4
- •Семинар 4
- •Домашнее задание 4 - Тема 4.
- •Тема 5. Геометрическое определение вероятности. Субъективная вероятность. Примеры вычисления вероятностей. – 4 часа: 2 часа лекции, 2 часа семинарское занятие Субъективная вероятность
- •Геометрическое определение вероятности
- •Свойства геометрической вероятности
- •Задачи, рассмотренные на лекции и семинаре 5. Тема 5. Геометрическая вероятность
- •Домашнее задание 5 - Тема 5. Геометрическая вероятность
- •Тема 6. Независимость событий. Вероятность произведения событий. Вероятность суммы событий. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Независимость событий
- •Тема 6. Задачи, рассмотренные на лекции и семинаре 6 Лекция 6
- •Семинар 6 Дополнительное задание
- •Домашнее задание 6 – Тема 6. Формулы вероятности суммы и произведения событий
- •Тема 7. Независимость событий. Условные вероятности. – 4 часа: 2 часа лекции, 2 часа семинарское занятие Условные вероятности
- •Полезный алгоритм
- •Тема 7. Независимость событий. Условная вероятность Задачи, рассмотренные на лекции и семинаре 7 Лекция 7
- •Семинар 7
- •Тема 8. Формула полной вероятности. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Тема 8. Задачи, рассмотренные на Лекции 8
- •Тема 8. - Домашнее задание 8. Формула полной вероятности
- •Тема 9. Формула Байеса (формула гипотез, формула апостериорной вероятности). – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Задачи, рассмотренные на Лекции и Семинаре 9
- •Домашнее задание 9. – Тема 9 – Теорема Байеса
- •Тема 10. Схема повторных независимых испытаний с двумя исходами. Схема Бернулли. Теорема и Формула Бернулли. - 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Формула Бернулли
- •Случай нескольких исходов
- •Вероятность появления рассматриваемого события не менее m раз
- •Задачи, рассмотренные на Лекции и Семинаре 10. Тема 10. Формула Бернулли Лекция 10
- •Семинар 10
- •Домашнее задание 10 – Тема 10. Схема Бернулли
- •Тема 11. Приближенные вычисления в схеме Бернулли. Формулы Пуассона, Муавра – Лапласа. Алгоритмы вычислений. Гауссиана. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Формула Пуассона
- •Алгоритм использования функции Гаусса в приближенных вычислениях
- •Алгоритм использования функции ф(х) в приближенных вычислениях
- •Задачи, рассмотренные на Лекции.
- •Тема 11. - Формулы Пуассона и Муавра – Лапласа
- •Домашнее задание 11. -Тема 11. Формулы Пуассона и Муавра – Лапласа. Кривая вероятностей (Гауссиана). Закон больших чисел
- •Тема 12. Бином Ньютона. Биномиальные коэффициенты. Свойства биномиальных коэффициентов. – 4 часа: 2 часа лекции, 2 часа семинарское занятие Свойства Сочетаний (биномиальных коэффициентов)
- •Треугольник Паскаля
- •Задачи, рассмотренные на Лекции 12. Бином Ньютона
- •Домашнее задание 12 – Тема 12. Бином Ньютона
- •Дискретная случайная величина
- •Закон распределения дискретной случайной величины
- •Математические операции над дискретными случайными величинами
- •Задачи, рассмотренные на Лекции и Семинаре. Тема 13
- •Домашнее задание 13 – Тема 13. Случайная величина (св).
- •Тема 14. Числовые характеристики случайной величины. «Меры положения»: среднее арифметическое, среднее геометрическое, мода, медиана. «Меры рассеяния»: дисперсия, эксцесс, асимметрия.
- •«Меры положения»
- •1. Средняя арифметическая величина. Понятие средней арифметической
- •Свойства средней величины
- •2. Мода
- •3. Медиана
- •Вариация массовых явлений. «Меры рассеяния»
- •4. Размах (интервал изменения)
- •5. Математическое ожидание
- •Свойства математического ожидания
- •6. Дисперсия и среднеквадратическое (стандартное) отклонение
- •Алгоритм вычисления дисперсии
- •Свойства дисперсии
- •7. Коэффициент вариации
- •Моменты распределения и показатели его формы. Центральные моменты распределения
- •9. Коэффициент асимметрии
- •10. Коэффициент эксцесса
- •Задачи, рассмотренные на Лекции и Семинаре 14
- •Домашнее задание 14. Тема 14 – Числовые характеристики случайной величины. Закон распределения св
- •Плотность распределения
- •Сходство и различия между законом распределения и плотностью распределения
- •Свойства плотности вероятности
- •Нормальный закон распределения
- •Свойства кривой вероятностей
- •Тема 16 – Понятие о биномиальной случайной величине. Основные характеристики биномиального распределения – 2 часа лекции Понятие о биномиальной случайной величине
- •Вопросы для контроля
- •Вопросы к зачету по теории вероятностей и математической статистике
- •Рекомендуемая литература
Тема 4. Элементы комбинаторики. Схема выбора с возвращением: Размещения, Сочетания, Перестановки с повторением – 4 часа: 2 часа лекции, 2 часа семинарское занятие
Схема выбора с возвращением.
Размещения с повторениями
Рассматриваются задачи, в которых выбор элементов из данного множества производится с возвращением. В этом случае выбранный из множества элемент возвращается назад в это множество либо автоматически замещается элементом, аналогичным выбранному.
Если при упорядоченной выборке m элементов из n-элементного множества А выбранные элементы возвращаются обратно и вновь упорядочиваются, то говорят о размещениях с повторениями. В отличие от «традиционных» размещений, размещения с повторениями могут отличаться друг от друга: элементами, порядком элементов, количеством повторений элементов.
Число
всех размещений
из n
элементов по m
элементов с повторениями обозначается
«А с чертой из n
по m»
-
и вычисляется по формуле:
.
Сочетания с повторениями
Пусть в Ω имеется m групп элементов, причем в каждой группе элементов достаточно много. Пусть элементы внутри группы неразличимы, но межгрупповые различия имеются.
Число
всех сочетаний из n
элементов по m
с повторениями обозначается символом
С с чертой
и вычисляется по формуле:
=
.
Расчетная формула приводится к виду:
=
Перестановки с повторениями
Пусть в упорядоченном множестве с n элементами имеется m различных элементов. Иногда говорят: «пусть множество разбито на несколько, в данном определении – на m - непустых подмножеств». При этом пусть первый элемент повторяется n1 раз, второй элемент – n2 раз, …, m-й элемент – nm раз, причем
n1 + n2 + … + nm = n.
Перестановки
из n
элементов данного множества называются
перестановками с повторениями из n
элементов. Число перестановок
с повторениями
из n,
n1
+ n2
+ … + nm
= n
элементов обозначается символом Рn
(n1,
n2,
, n)
и вычисляется по формуле:
Рn
(n1,
n2,
…, nm)
=
Задачи, рассмотренные на лекции и семинаре. Тема 4.
Схема с возвращением. Перестановки, Сочетания, Размещения
Лекция 4
Задача 1–Т4. Сколько различных двузначных чисел можно составить из цифр 1, 3, 5, если цифры в числах могут повторяться?
Задача 2–Т4 (для самостоятельного решения). Подсчитайте, сколько трехзначных чисел можно составить из цифр 1, 3, 5.
Задача 3-Т4. Из трех элементов a, b, c составить все размещения по два элемента с повторениями.
Задача 4-Т4 (для самостоятельного решения). Из элементов (цифр) 2, 4, 5 составить все размещения с повторениями по два элемента.
Задача 5-Т4. Сколько пятизначных чисел можно составить, используя цифры:
а) 2, 5, 7, 8;
б) 0, 1, 9.
Задача 6–Т4. В качестве некоторого пароля можно использовать в любом порядке латинские буквы, цифры и символ подчеркивания. Пароль к регистру нечувствителен. Пользователь составил пароль из 4 знаков. Сколько всевозможных вариантов таких паролей может быть?
Задача 7-Т4. Из трех элементов a, b, c составить все сочетания по два элемента с повторениями.
Задача 8-Т4 (для самостоятельного решения). Из элементов (цифр) 2, 4, 5 составить все сочетания с повторениями по два элемента.
Задача 9–Т4. В продаже имеются пирожные 7 различных видов. Пирожные одного и того же вида считаем неразличимыми. Сколько существует различных способов покупки 12 пирожных?
Задача 10–Т4. Сколько различных слов, каждое из которых состоит из семи букв можно составить из букв слова «КОРОБОК»?
Задача 12-Т4. Сколько различных пятизначных чисел можно составить из цифр 3, 3, 5, 5, 8?
Задача 13-Т4 (для самостоятельного решения). У девочки имеется 2 белых бусины, 3 синих и 1 красная. Сколькими способами их можно нанизать на нитку?
Задача 14-Т4. На шести карточках написаны буквы, из которых можно составить слово АНАНАС. Сколько существует различных шестибуквенных слов, которые можно составить при помощи этих шести карточек?
Задача 15-Т4. В почтовом отделении имеются открытки 6 видов. Какова вероятность того, что среди 4 проданных открыток:
а) все открытки одинаковы?
б) различны?