
- •Теория вероятностей и математическая статистика
- •Случайные события
- •Действия над событиями
- •Свойства операций над событиями
- •Задачи, рассмотренные на лекции и семинаре. Тема 1. События. Основные операции над событиями Лекция 1
- •Семинар 1
- •Домашнее задание 1 – Тема 1.
- •Свойства относительной частоты
- •Свойства статистической вероятности
- •Классическое определение вероятности
- •Свойства «классической» вероятности
- •Полезный алгоритм
- •Задачи, рассмотренные на лекции и семинаре. Тема 2 Лекция 2
- •Семинар 2
- •Домашнее задание 2 – Тема 2.
- •Классическое определение вероятности
- •Домашнее задание 2 – Тема 2.
- •Классическое определение вероятности
- •Тема 2.1. Элементы комбинаторики. Правило суммы и правило произведения. – 4 часа 2 часа лекции, 2 часа семинарское занятие Элементы комбинаторики
- •Правило произведения
- •Правило сложения (суммы)
- •Задачи, рассмотренные на Лекции и Семинаре 2.1.
- •Домашнее задание 2.1 – Тема 2.1 Элементы комбинаторики: Правило Суммы, Правило Произведения
- •Тема 3. Элементы комбинаторики. Понятие о «схеме выбора». Схема выбора без возвращения: Перестановки, Размещения, Сочетания. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Соединения. Виды соединений
- •Перестановки
- •Размещения
- •Сочетания
- •Свойства Сочетаний (биномиальных коэффициентов)
- •Семинар 3
- •Домашнее задание 3 – Тема 3. Элементы комбинаторики: Перестановки, Размещения, Сочетания
- •Тема 4. Элементы комбинаторики. Схема выбора с возвращением: Размещения, Сочетания, Перестановки с повторением – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Размещения с повторениями
- •Сочетания с повторениями
- •Перестановки с повторениями
- •Задачи, рассмотренные на лекции и семинаре. Тема 4.
- •Лекция 4
- •Семинар 4
- •Домашнее задание 4 - Тема 4.
- •Тема 5. Геометрическое определение вероятности. Субъективная вероятность. Примеры вычисления вероятностей. – 4 часа: 2 часа лекции, 2 часа семинарское занятие Субъективная вероятность
- •Геометрическое определение вероятности
- •Свойства геометрической вероятности
- •Задачи, рассмотренные на лекции и семинаре 5. Тема 5. Геометрическая вероятность
- •Домашнее задание 5 - Тема 5. Геометрическая вероятность
- •Тема 6. Независимость событий. Вероятность произведения событий. Вероятность суммы событий. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Независимость событий
- •Тема 6. Задачи, рассмотренные на лекции и семинаре 6 Лекция 6
- •Семинар 6 Дополнительное задание
- •Домашнее задание 6 – Тема 6. Формулы вероятности суммы и произведения событий
- •Тема 7. Независимость событий. Условные вероятности. – 4 часа: 2 часа лекции, 2 часа семинарское занятие Условные вероятности
- •Полезный алгоритм
- •Тема 7. Независимость событий. Условная вероятность Задачи, рассмотренные на лекции и семинаре 7 Лекция 7
- •Семинар 7
- •Тема 8. Формула полной вероятности. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Тема 8. Задачи, рассмотренные на Лекции 8
- •Тема 8. - Домашнее задание 8. Формула полной вероятности
- •Тема 9. Формула Байеса (формула гипотез, формула апостериорной вероятности). – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Задачи, рассмотренные на Лекции и Семинаре 9
- •Домашнее задание 9. – Тема 9 – Теорема Байеса
- •Тема 10. Схема повторных независимых испытаний с двумя исходами. Схема Бернулли. Теорема и Формула Бернулли. - 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Формула Бернулли
- •Случай нескольких исходов
- •Вероятность появления рассматриваемого события не менее m раз
- •Задачи, рассмотренные на Лекции и Семинаре 10. Тема 10. Формула Бернулли Лекция 10
- •Семинар 10
- •Домашнее задание 10 – Тема 10. Схема Бернулли
- •Тема 11. Приближенные вычисления в схеме Бернулли. Формулы Пуассона, Муавра – Лапласа. Алгоритмы вычислений. Гауссиана. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
- •Формула Пуассона
- •Алгоритм использования функции Гаусса в приближенных вычислениях
- •Алгоритм использования функции ф(х) в приближенных вычислениях
- •Задачи, рассмотренные на Лекции.
- •Тема 11. - Формулы Пуассона и Муавра – Лапласа
- •Домашнее задание 11. -Тема 11. Формулы Пуассона и Муавра – Лапласа. Кривая вероятностей (Гауссиана). Закон больших чисел
- •Тема 12. Бином Ньютона. Биномиальные коэффициенты. Свойства биномиальных коэффициентов. – 4 часа: 2 часа лекции, 2 часа семинарское занятие Свойства Сочетаний (биномиальных коэффициентов)
- •Треугольник Паскаля
- •Задачи, рассмотренные на Лекции 12. Бином Ньютона
- •Домашнее задание 12 – Тема 12. Бином Ньютона
- •Дискретная случайная величина
- •Закон распределения дискретной случайной величины
- •Математические операции над дискретными случайными величинами
- •Задачи, рассмотренные на Лекции и Семинаре. Тема 13
- •Домашнее задание 13 – Тема 13. Случайная величина (св).
- •Тема 14. Числовые характеристики случайной величины. «Меры положения»: среднее арифметическое, среднее геометрическое, мода, медиана. «Меры рассеяния»: дисперсия, эксцесс, асимметрия.
- •«Меры положения»
- •1. Средняя арифметическая величина. Понятие средней арифметической
- •Свойства средней величины
- •2. Мода
- •3. Медиана
- •Вариация массовых явлений. «Меры рассеяния»
- •4. Размах (интервал изменения)
- •5. Математическое ожидание
- •Свойства математического ожидания
- •6. Дисперсия и среднеквадратическое (стандартное) отклонение
- •Алгоритм вычисления дисперсии
- •Свойства дисперсии
- •7. Коэффициент вариации
- •Моменты распределения и показатели его формы. Центральные моменты распределения
- •9. Коэффициент асимметрии
- •10. Коэффициент эксцесса
- •Задачи, рассмотренные на Лекции и Семинаре 14
- •Домашнее задание 14. Тема 14 – Числовые характеристики случайной величины. Закон распределения св
- •Плотность распределения
- •Сходство и различия между законом распределения и плотностью распределения
- •Свойства плотности вероятности
- •Нормальный закон распределения
- •Свойства кривой вероятностей
- •Тема 16 – Понятие о биномиальной случайной величине. Основные характеристики биномиального распределения – 2 часа лекции Понятие о биномиальной случайной величине
- •Вопросы для контроля
- •Вопросы к зачету по теории вероятностей и математической статистике
- •Рекомендуемая литература
Тема 3. Элементы комбинаторики. Понятие о «схеме выбора». Схема выбора без возвращения: Перестановки, Размещения, Сочетания. – 4 часа: 2 часа лекции, 2 часа семинарское занятие
Существуют две схемы выбора m элементов из множества, состоящего из n элементов:
- без возвращения, когда выбранные элементы после извлечения не возвращаются в исходное множество;
- с возвращением, когда выбор осуществляется поэлементно с обязательным возвращением отобранного элемента в исходное множество на каждом шаге выбора.
Схема выбора без возвращений.
Соединения. Виды соединений
Пусть А – совокупность некоторых n объектов (предметов, элементов и пр.) а1, а2, … аn , объединенных некоторым признаком или свойством. Из различных элементов множества А можно образовать группы. Если в каждую группу входит одно и то же количество элементов, например, m (m ≤ n), взятых из множества А, то говорят, что они образуют соединения из n элементов по m в каждом.
В зависимости от того, входят ли в соединение все элементы множества А,- или только часть элементов этого множества, имеет ли значение порядок следования элементов, или порядок следования элементов значения не имеет, под общим именем соединений принято понимать следующие три типа комбинаций: перестановки; размещения; сочетания.
Перестановки
Перестановками называются такие изменения, в результате которых количество выбираемых предметов сохраняется, а порядок их извлечения может изменяться случайным способом.
Определение
1.
Соединения, в которые входят все
n
элементов множества А
и которые отличаются только порядком
следования элементов, называются
перестановками
из n
элементов. Количество перестановок
обозначается
и читается «Пэ из эн».
Число перестановок Р из n элементов равно:
Произведение n·(n - 1)·(n - 2)·… ·1 называется факториалом числа n, обозначается символом n!, который читается «эн-факториал».
Принято, что 0! = 1 и 1! = 1.
Размещения
Определение 2. Соединения, каждое из которых содержит m различных элементов (m ≤ n), взятых из n элементов множества А, отличающихся друг от друга или составом элементов или порядком расположения элементов, называются размещениями из n элементов по m в каждом.
Число
таких размещений обозначается символом
,
читается «А
из эн по эм».
Число возможных размещений из n элементов по m в каждом равно произведению m последовательно убывающих на единицу чисел, из которых большее есть n, т.е.
Это
еще одна, на мой взгляд, более удобная
расчетная формула для Размещений. По
определению, перестановки являются
частным случаем размещений,
когда m
= n:
Рn
=
А.
Сочетания
Сколькими способами можно выбрать из n различных объектов (предметов) m штук?
Определение 3. Соединения, каждое из которых содержит m различных элементов (m ≤ n), взятых из n элементов множества А, отличающихся друг от друга по крайней мере одним элементом, называются сочетаниями из n элементов по m.
Число
таких сочетаний обозначается символом
или
и читается «цэ из эн по эм».
Из определения следует, что сочетания отличаются друг от друга хотя бы одним элементом, т.е. составом входящих элементов. Изменение порядка следования элементов внутри одного сочетания не приводит к образованию нового сочетания.
Число всех возможных сочетаний из n элементов по m в каждом выражается формулой
Факториальная запись этой формулы.