
- •«Теоретические основы защиты окружающей среды» тозос
- •2. Факторы, влияющие на величину скорости осаждения частицы.
- •3. Процессы флотации.
- •4.Ионный обмен
- •5. Коагуляция, флокуляция. Область применения.
- •6.Адсорбция. Определение. Область применения
- •7.АБсорбция. Определение. Область применения
- •8.Физическая и химическая абсорбция.
- •9.Очистка сточных вод экстракцией.
- •10. Процессы электрохимического окисления и восстановления.
- •11.Процессы электрокоагуляции, электрофлотации, электродиализа
- •12.Мембранные процессы
- •13.Рассеивание вредных веществ в атмосфере.
Методы разделения гетерогенных систем: осаждение, фильтрование, центрифугирование, мокрое разделение.
Осаждение представляет собой процесс разделения, при котором взвешенные в жидкости или газе твёрдые и жидкие частицы отделяются от сплошной фазы под действием силы тяжести, центробежной силы, сил инерции, и электрических сил.
Фильтрование – процесс разделения с помощью пористой перегородки, способной пропускать жидкость или газ, но задерживать
взвешенные частицы. Движущей силой процесса является разность давлений.
Мокрая очистка газов – процесс улавливания взвешенных в газе частиц какой-либо жидкостью, под действием сил тяжести или сил инерции и применяется для очистки газов и разделения суспензий.
ЦЕНТРИФУГИРОВАНИЕ – разделение в поле центробежных сил жидких дисперсных систем с частицами размером более 100 нм. Используют для выделения составляющих фаз (жидкая - фугат или фильтрат, твердая - осадок) из двухкомпонентных (суспензии, эмульсии) и трехкомпонентных (эмульсии, содержащие твердую фазу) систем.
В практике центрифугирования применяются два способа разделения жидких неоднородных систем: центробежное фильтрование и центробежное осаждение. В первом случае центрифуги изготовляются с перфорированным ротором, на внутренней стенке (обечайке) которого уложена фильтровальная перегородка — фильтрующие центрифуги, во втором — с отстойным ротором, имеющим сплошную обечайку — отстойные центрифуги. Изготовляются также комбинированные отстойно-фильтрующие центрифуги, в которых совмещаются оба принципа разделения.
2. Факторы, влияющие на величину скорости осаждения частицы.
Скорость ОСАЖДЕНИЯ зависит от физических свойств дисперсной и дисперсионной фаз, концентрации дисперсной фазы, температуры. Скорость ОСАЖДЕНИЕ
отдельной сферич. частицы описывается уравением Стокса:
Woc = [d2*(ρт - ρс)*g]/18μc ;
где Woc – ск-ть свободн.осаждения тв.частицы шарообразн.формы, м/с;
d – диаметр частицы, м; ρт – плотность твёрдой частицы, кг/м3;
ρс – плотность среды, кг/м3; μс – динамическая вязкость среды, Па.с.
Уравнение Стокса применимо лишь к строго ламинарному режиму движения частицы, когда число Рейнольдса Re < 1,6, и не учитывает ортокинетич, коагуляцию, поверхностные явления, влияние изменения концентрации твердой фазы, роль стенок сосуда и др. факторы.
Для частиц неправильной формы скорость осаждения меньше, и потому скорость, рассчитанную для шарообразной частицы, необходимо умножить на поправочный коэффициент φ, называемый коэффициентом (или фактором) формы.
W = φ*Woc шар.
где W – скорость осаждения твердых частиц произвольной формы, м/с;
φ – коэффициент формы.
Коэффициенты формы частиц:
- кубическая, φ = 0,806;
- продолговатая, φ = 0,58;- круглая, φ = 0,69;
- пластинчатая, φ = 0,43;- угловатая, φ = 0,66;
3. Процессы флотации.
Флотацию применяют для удаления из сточных вод нерастворимых диспергированных примесей, которые самопроизвольно плохо отстаиваются. В некоторых случаях флотацию используют и для удаления растворимых веществ (например, ПАВ).
Различают следующие способы флотационной обработки сточных вод:
- с выделением воздуха из растворов;
- с механическим диспергированием воздуха;
- с подачей воздуха через пористые материалы;
- электрофлотация;
- химическая флотация.
Флотацию с выделением воздуха из растворов применяют для очистки сточных вод, которые содержат очень мелкие частицы загрязнений. Сущность способа заключается в создании пересыщенного раствора воздуха в сточной жидкости. При уменьшении давления из раствора выделяется пузырьки воздуха, которые флотируют загрязнение.
В зависимости от способа создания пересыщенного раствора воздуха в
воде различают: - вакуумную; - напорную; - эрлифтную флотацию.
При вакуумной флотации сточную воду предварительно насыщают воздухом при атмосферном давлении в аэрационной камере, а затем направляют во флотационную камеру, где вакуум-насосом поддерживается разряжение 30 – 40 кПа. Выделившиеся в камере мельчайшие пузырьки выносят часть загрязнений. Процесс флотации длится около 20 минут.
Достоинствами этого способа являются:
- образование пузырьков газа и их слипание с частицами, происходящие в спокойной среде;
- затраты энергии на процесс минимальны.
Недостатки:
- незначительная степень насыщения стоков пузырьками газов, поэтому этот способ нельзя применять при высоких концентрациях взвеси частиц, не больше 250 – 300 мг/л);
- необходимость сооружать герметично закрытые флотаторы и размещать в них скребковые механизмы.
Напорные установки имеют большее распространение, чем вакуумные, они просты и надежны в эксплуатации. Напорная флотация позволяет очищать сточные воды с концентрацией взвесей до – 5 г/л. Для увеличения степени очистки в воду иногда добавляют коагулянты.
Процесс осуществляется в две стадии:
1) насыщение воды воздухом под давлением;
2) выделение растворенного газа под атмосферным давлением.
Механическое диспергирование воздуха во флотационных установках обеспечивается турбинками насосного типа – импеллерами, которые представляют собой диск с обращенными вверх лопатками. Такие установки широко используют для очистки сточных вод с высоким содержанием взвешенных частиц (более 2 г/л). При вращении импеллера в жидкости возникает большое число мелких вихревых потоков, которые разбиваются на пузырьки определенной величины. Степень измельчения и эффективность очистки зависит от скорости вращения импеллера: чем больше скорость, тем меньше пузырек и тем больше эффективность процесса.
4.Ионный обмен
основан на процессе обмена межу ионами, находящимися в растворе, и ионами, присутствующими на поверхности твердой фазы – ионита. Этими методами удается извлекать и утилизироватьценные примеси: соединения мышьяка и фосфора, хром, цинк, свинец, медь, ртуть и другие металлы, а также поверхностно-активные и радиоактивные вещества. Иониты разделяют на катиониты и аниониты. На катионитах происходит обмен катионами, а на анионитах – анионами. Этот обмен можно представить в виде следующей схемы. Катионит: Me+ + H[K] → Me[K] + H+.
Анионит: SO – 24 + 2[A]OH → [A]2SO4 + 2OH- Особенностью ионитов является обратимый характер ионообменных реакций. Поэтому можно «посаженные» на ионит ионы «снять» обратной реакцией. Для этого катионит промывают раствором кислоты, а анионит – раствором щелочи. Таким способом осуществляют регенерацию ионитов.
Для ионообменной очистки сточных вод применяют фильтры периодического и непрерывного действия. Фильтр периодического действия представляет собой закрытый цилиндрический резервуар с расположенным у днища щелевым дренажным устройством, обеспечивающим равномерное отведение воды по всему сечению фильтра.
Высота слоя загрузки ионита 1,5 – 2,5 м. Фильтр может работать по параллельной и по противоточной схеме. В первом случае и сточная вода, и регенерирующий раствор подаются сверху, во втором – сточная вода подается снизу, а регенерирующий раствор – сверху.
На работу ионообменного фильтра большое влияние оказывает содержание взвешенных частиц в подаваемой сточной воде. Поэтому перед подачей в фильтр воду подвергают механической очистке.
Разновидностью ионообменного метода очистки сточных вод является электродиализ – это метод разделения ионов под действием электродвижущей силы, создаваемой в растворе по обе стороны разделяющей его мембраны. Процесс разделения проводят в электродиализаторе. Под действием постоянного электрического тока катионы, двигаясь к катоду, проникают через катионитовые мембраны, но задерживаются анионитовыми, а анионы, двигаясь в направлении анода, проходят через анионитовые мембраны, но задерживаются катионитовыми.
В результате этого из одного ряда камер ионы выводятся в смежный ряд камер. Очищенная от солей вода выпускается по одному коллектору, а концентрированный раствор – по другому.
Электродиализаторы применяют для удаления растворенных в сточной воде солей. Оптимальная концентрация солей 3 – 8 г/л. Во всех электродиализаторах применяют электроды, изготовленные преимущественно из платинированного титана.
5. Коагуляция, флокуляция. Область применения.
Коагуляция – это процесс укрупнения дисперсных частиц в результате их взаимодействия и объединения в агрегаты. В очистке сточных вод коагуляцию применяют для ускорения процесса осаждения тонкодисперсных примесей и эмульгированных веществ. Она наиболее эффективна для удаления из воды коллоидно-дисперсных частиц, т.е. частиц размером 1-100 мкм. В процессах очистки сточных вод коагуляция происходит под влиянием добавляемых к ним специальных веществ – коагулянтов. Коагулянты в воде образуют хлопья гидроксидов металлов, которые быстро оседают под действием силы тяжести. Хлопья обладают способностью улавливать коллоидные и взвешенные частицы и агрегировать их. Т.к. коллоидная частица имеет слабый отрицательный заряд, а хлопья коагулянтов – слабый положительный заряд, то между ними возникает взаимное притяжение. В качестве коагулянтов обычно используют соли алюминия, железа или их смесь. Выбор коагулянта зависит от его состава, физико-химических свойств, концентрации примесей в воде и от рН солевого состава воды. В качестве коагулянтов используют сульфат алюминия, гидрохлорид алюминия. Из солей железа в качестве коагулянта используются сульфат железа и хлорид железа, а иногда их смеси.
Флокуляция – это процесс агрегации взвешенных частиц при добавлении в сточную воду высокомолекулярных соединений – флокулянтов. В отличие от коагулянтов, при флокуляции агрегация происходит не только при непосредственном контакте частиц, но и в результате взаимодействия молекул, адсорбированных на частицах коагулянта. Флокуляцию проводят для интенсификации процесса образования хлопьев гидроксидов алюминия и железа с целью повышения скорости их осаждения. Использование флокулянтов позволяет снизить дозы коагулянтов, уменьшить продолжительность процесса коагуляции и повысить скорость осаждения образовавшихся хлопьев. Для очистки сточных вод используют как природные, так и синтетические флокулянты. К природным относятся крахмал, эфиры, целлюлоза и др. Наиболее активным флокулянтом является диоксид кремния. Из синтетических органических флокулянтов наибольшее применение в нашей стране получил полиакриламид. Механизм действия флокулянтов основан на следующих явлениях: адсорбция молекул флокулянта на поверхности коллоидных частиц, образование сетчатой структуры молекул флокулянта, слипание коллоидных частиц за счёт сил Ван-дер-Ваальса. При действии флокулянтов между коллоидными частицами образуются трёхмерные структуры, способные к более быстрому и полному отделению от жидкой фазы. Причиной возникновения таких структур является адсорбция макромолекул флокулянта на нескольких частицах с образованием между ними полимерных мостиков. Коллоидные частицы заряжены отрицательно, что способствует процессу взаимной коагуляции с гидроксидом алюминия или железа.
6.Адсорбция. Определение. Область применения
Адсорбция – процесс избирательного поглощения одного или нескольких компонентов из газовой или жидкой смеси поверхностью твердого поглотителя. Газовую или жидкую фазу, в которой находится компонент, подлежащий удалению, называют носителем (газ-носитель или жидкость- носитель). Поглощаемое вещество – адсорбтивом, поглощенное вещество – адсорбатом, а твердое тело (поглотитель) – адсорбентом.
Адсорбционные методы широко применяют для глубокой очистки сточных вод от растворенных органических веществ после биохимической очистки, а также в локальных установках, если концентрация этих веществ в воде невелика и они биологически не разлагаются или являются сильно токсичными. Применение локальных установок целесообразно, если вещество хорошо адсорбируется при небольшом удельном расходе адсорбента.
Адсорбцию используют для обезвреживания сточных вод от фенолов, гербицидов, пестицидов, ароматических нитросоединений, ПАВ, красителей и т.д.
Достоинством метода является высокая эффективность, возможность очистки сточных вод, содержащих несколько веществ, а также рекуперация этих веществ.
7.АБсорбция. Определение. Область применения
Абсорбцией называют процесс поглощения газов или паров из газовых или парогазовых смесей жидкими поглотителями. Этот процесс является избирательным и обратимым.
В абсорбционных процессах участвуют две фазы – газовая и жидкая. Газовая фаза состоит из непоглощаемого газа - носителя и одного или нескольких абсорбируемых компонентов. Жидкая фаза представляет собой раствор абсорбируемого (целевого) компонента в жидком поглотителе. При физической абсорбции газ – носитель и жидкий поглотитель инертны по отношению к переходящему компоненту и один по отношению друг к другу.
Для очистки отходящих газов от диоксида серы предложено много методов, однако на практике нашли применение только некоторые из них. Это связано с тем, что объемы отходящих газов велики, а концентрация в них SO2 мала, газы характеризуются высокой температурой и значительным содержанием пыли. Для абсорбции могут быть использованы вода, водные растворы и суспензии солей щелочных и щелочноземельных металлов.
В зависимости от особенностей взаимодействия поглотителя и извлекаемого из газовой смеси компонента абсорбционные методы подразделяются на методы, базирующиеся на закономерностях физической абсорбции, и методы абсорбции, сопровождаемой химической реакцией в жидкой фазе (хемосорбция).
8.Физическая и химическая абсорбция.
При физической абсорбции растворение газа не сопровождается химической реакцией (или, по крайней мере, эта реакция не оказывает заметного влияния на процесс). В данном случае над раствором существует более или менее значительное равновесное давление компонента и поглощение последнего происходит лишь до тех пор, пока его парциальное давление в газовой фазе выше равновесного давления над раствором. Полное извлечение компонента из газа при этом возможно только при противотоке и подаче в абсорбер чистого поглотителя, не содержащего компонента. При физической абсорбции энергия взаимодействия молекул газа и абсорбента в растворе не превышает 20 кДж/моль.
При хемосорбции (абсорбция, сопровождаемая химической реакцией) абсорбируемый компонент связывается в жидкой фазе в виде химического соединения. При необратимой реакции равновесное давление компонента над раствором ничтожно мало и возможно полное его поглощение. При обратимой реакции над раствором существует заметное давление компонента, хотя и меньшее, чем при физической абсорбции. Молекулы растворенного газа реагируют с активным компонентом абсорбента-хемосорбентом (энергия взаимодействия молекул более 25 кДж/моль) либо в растворе происходит диссоциация или ассоциация молекул газа. Промежуточные варианты абсорбции характеризуются энергией взаимодействия молекул 20-30 кДж/моль. К таким процессам относится растворение с образованием водородной связи, в частности абсорбция ацетилена диметилформамидом.
9.Очистка сточных вод экстракцией.
Жидкостную экстракцию применяют для очистки сточных вод, содержащих фенолы, масла, органические кислоты, ионы металлов и др.
Целесообразность использования экстракции для очистки сточных вод определяется концентрацией органических примесей в них.
Очистка сточных вод экстракцией состоит из трех стадий.
1стадия – интенсивное смешение сточной воды с экстрагентом (органическим растворителем). В условиях развитой поверхности контакта между жидкостями образуются две жидкие фазы. Одна фаза – экстракт содержит извлекаемое вещество и экстрагент, другая – рафинат – сточную воду и экстрагент.
2 с – разделение экстракта и рафината; 3-регенерация экстрагента из экстракта и рафината.
Чтобы снизить содержание растворенных примесей до концентраций, ниже предельно допустимых, необходимо правильно выбрать экстрагент и скорость его подачи в сточную воду. При выборе растворителя следует учитывать его селективность, физ-хим свойства, стоимость и возможные способы регенерации.
При содержании в сточной воде нескольких примесей целесообразно извлекать экстракцией сначала один из компонентов – наиболее ценный или токсичный, а затем, если это необходимо, другой и т.д. При этом для каждого компонента может быть разный экстрагент.
Необходимость извлечения экстрагента из экстракта связана с тем, что его надо вновь вернуть в процесс экстракции. Регенерация может быть проведена с применением вторичной экстракции с другим растворителем, а также выпариванием, дистилляцией, химическим взаимодействием или осаждением. Не проводить регенерацию экстрагента в случае, если нет необходимости возвращать его в цикл.
10. Процессы электрохимического окисления и восстановления.
Для очистки сточных вод от различных растворимых и диспергированных примесей применяют процессы анодного окисления и катодного восстановления, электрокоагуляции, электрофлокуляции и электродиализа. Все эти процессы протекают на электродах при пропускании через сточную воду постоянного электрического тока. Электрохимические методы позволяют извлекать из сточных вод ценные продукты при относительно простой автоматизированной технологической схеме очистки, без использования химических реагентов. Основным недостатком этих методов является большой расход электроэнергии.
Очистку сточных вод электрохимическими методами можно проводить периодически или непрерывно.
11.Процессы электрокоагуляции, электрофлотации, электродиализа
Электрокоагуляция. При прохождении сточной воды через межэлектродное пространство электролизера происходит электролиз поды, поляризация частиц, электрофорез, окислительно-восстановительные процессы, взаимодействие продуктов электролиза друг с другом. При использовании нерастворимых электродов коагуляция может происходить в результате электрофоретических явлений и разряда заряженных частиц на электродах, образования в растворе веществ (хлор, кислород), разрушающих сольватные соли па поверхности частиц. Такой процесс можно использовать для очистки вод при невысоком содержании коллоидных частиц и низкой устойчивости загрязнений. Для очистки промышленных сточных вод, содержащих высоко устойчивые загрязнения, проводят электролиз с использованием растворимых стальных или алюминиевых анодов. Под действием тока происходит растворение металла, в результате чего в воду переходят катионы железа или алюминия, которые, встречаясь с гидроксидными группами, образуют гидроксиды металлов в виде хлопьев. Наступает интенсивная коагуляция.
Достоинства метода электрокоагуляции: компактность установок и простота управления, отсутствие потребности в реагентах, малая чувствительность к изменениям условий проведения процесса очистки (температура, рН среды, присутствие токсичных веществ), получение шлама с хорошими структурно-механическими свойствами. Недостатком метода является повышенный расход металла и электроэнергии. Электрокоагуляция находит применение в пищевой, химической и целлюлозно-бумажной промышленности.
Электрофлотация. В этом процессе очистка сточных вод от взвешенных частиц происходит при помощи пузырьков газа, образующихся при электролизе воды. На аноде возникают пузырьки кислорода, а на катоде – водорода. Поднимаясь в сточной воде, эти пузырьки флотируют взвешенные частицы. При использовании растворимых электродов происходит образование хлопьев коагулянтов и пузырьков газа, что способствует более эффективной флотации.
Электродиализ – это метод разделения ионов под действием электродвижущей силы, создаваемой в растворе по обе стороны разделяющей его мембраны. Процесс разделения проводят в электродиализаторе. Под действием постоянного электрического тока катионы, двигаясь к катоду, проникают через катионитовые мембраны, но задерживаются анионитовыми, а анионы, двигаясь в направлении анода, проходят через анионитовые мембраны, но задерживаются катионитовыми. В результате этого из одного ряда камер ионы выводятся в смежный ряд камер.
12.Мембранные процессы
Обратным осмосом и ультрафильтрацией называют процессы фильтрования растворов через полупроницаемые мембраны под давлением, превышающим осмотическое давление. Мембраны пропускают молекулы растворителя, задерживая растворенные вещества. При обратном осмосе отделяются частицы (молекулы, гидратированные ионы), размеры которых не превышают размеров молекул растворителя. При ультрафильтрации размер отдельных частиц dч на порядок больше.
Обратный осмос, схема которого приведена на широко используется для обессоливания воды в системах водоподготовки ТЭЦ и предприятий различных отраслей промышленности (полупроводников, кинескопов, медикаментов и др.); в последние годы начинает применяться для очистки некоторых промышленных и городских сточных вод.
Простейшая установка обратного осмоса состоит из насоса высокого давления и модуля (мембранного элемента), соединенных последовательно.
Эффективность процесса зависит от свойств применяемых мембран. Они должны обладать следующими достоинствами: высокой разделяющей способностью (селективностью), большой удельной производительностью (проницаемостью), устойчивостью к действию среды, неизменностью характеристик в процессе эксплуатации, достаточной механической прочностью, низкой стоимостью.
Для ультрафильтрации предложен другой механизм разделения. Растворенные вещества задерживаются на мембране потому, что размер молекул их больше, чем размер пор, или вследствие трения молекул о стенки пор мембраны. В действительности в процессе обратного осмоса и ультрафильтрации имеют место более сложные явления.
Процесс мембранного разделения зависит от давления, гидродинамических условий и конструкции аппарата, природы и концентрации сточных вод, содержания в них примесей, а также от температуры. Увеличение концентрации раствора приводит к росту осмотического давления растворителя, повышению вязкости раствора и росту концентрационной поляризации, то есть к снижению проницаемости и селективности. Природа растворенного вещества оказывает влияние на селективность. При одинаковой молекулярной массе неорганические вещества задерживаются на мембране лучше, чем органические.
13.Рассеивание вредных веществ в атмосфере.
Для того чтобы концентрация вредного вещества в приземном слое атмосферы не превышала предельно допустимую максимальную разовую концентрацию, пылегазовые выбросы подвергаются рассеиванию в атмосфере через высотные трубы. Распространение в атмосфере выбрасываемых из труб промышленных выбросов подчиняется законам турбулентной диффузии. На процесс рассеивания выбросов существенное влияние оказывают состояние атмосферы, расположение предприятий, характер местности, физические свойства выбросов, высота трубы, диаметр устья и др. Горизонтальное перемещение примесей определяется в основном скоростью ветра, а вертикальное - распределением температур в вертикальном направлении.
По мере удаления от трубы в направлении распространения промышленных выбросов концентрация вредностей в приземном слое атмосферы сначала нарастает, достигает максимума и затем медленно убывает, что позволяет говорить о наличии трех зон неодинакового загрязнения атмосферы: зона переброса факела выбросов, характеризующаяся относительно невысоким содержанием вредных веществ в приземном слое атмосферы; зона задымления - зона максимального содержания вредных веществ и зона постепенного снижения уровня загрязнения.
Согласно действующей методике минимальная высота Нmin одноствольной трубы для рассеивания газовоздушных выбросов, имеющих температуру выше температуры окружающего воздуха, определяется по формуле
Hmin=√AMkFmn/ПДК 3√1/QΔT,
где А - коэффициент, зависящий от температурного градиента атмосферы и определяющий условия вертикального и горизонтального рассеивания вредностей. В зависимости от метеорологических условий для субтропической зоны Средней Азии A=240; для Казахстана, Нижнего Поволжья, Кавказа, Молдавии, Сибири, Дальнего Востока и остальных районов Средней Азии - 200; Севера и Северо-Запада европейской территории СССР, Среднего Поволжья, Урала и Украины - 160; Центральной части европейской территории СССР - 120;
М - количество вредного вещества, выбрасываемого в атмосферу, г/с;
Q - объемный расход газовоздушной смеси, выбрасываемой из всех труб, м3/с;
kF - коэффициент, учитывающий скорость оседания взвешенных частиц выброса в атмосфере. Для газов kF=1, для пыли при эффективности очистки газоочистной установки более 0,90-2,5 и менее 0,75-3;
ΔT - разность температур выбрасываемой газовоздушной смеси и окружающего атмосферного воздуха. Температуру окружающего воздуха принимают по средней температуре самого жаркого месяца в 13 часов;
m и п - безразмерные коэффициенты, учитывающие условия выхода газовоздушной смеси из устья источника выброса.