Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
134
Добавлен:
09.11.2013
Размер:
25.27 Кб
Скачать

Дивергенция — дифференциальный оператор, отображающий векторное поле на скалярное (то есть операция дифференцирования, в результате применения которой к векторному полю получается скалярное поле), который определяет (для каждой точки), «насколько расходится входящее и исходящее из малой окрестности данной точки поле» (точнее — насколько расходятся входящий и исходящий поток).

Если учесть, что потоку можно приписать алгебраический знак, то нет необходимости учитывать входящий и исходящий потоки по отдельности, всё будет автоматически учтено при суммировании с учётом знака. Поэтому можно дать более короткое определение дивергенции:

Дивергенция — это линейный дифференциальный оператор на векторном поле, характеризующий поток данного поля через поверхность достаточно малой в условиях конкретной задачи окрестности каждой внутренней точки области определения поля.

В трёхмерном декартовом пространстве дивергенция будет определяться выражением

Это же выражение можно записать с использованием оператора набла

Физическая интерпретация

С точки зрения физики (и в строгом смысле, и в смысле интуитивного физического образа математической операции) дивергенция векторного поля является показателем того, в какой степени данная точка пространства является источником или стоком этого поля:

 — точка поля является источником;

 — точка поля является стоком;

 — стоков и источников нет, либо они компенсируют друг друга.

Простым, хоть быть может и несколько схематическим, примером может служить озеро (для простоты — постоянной единичной глубины со всюду горизонтальной скоростью течения воды, не зависящей от глубины, давая, таким образом, двумерное векторное поле на двумерном пространстве). Если угодно иметь более реалистическую картину, то можно рассмотреть горизонтальную проекцию скорости, проинтегрированную по вертикальной пространственной координате, что даст ту же картину двумерного векторного поля на двумерном пространстве, причём картина качественно будет для наших целей не сильно отличаться от упрощённой первой, количественно же являться её обобщением (весьма реалистическим). В такой модели (и в первом, и во втором варианте) родники, бьющие из дна озера будут давать положительную дивергенцию поля скоростей течения, а подводные стоки (пещеры, куда вода утекает) — отрицательную дивергенцию.

Дивергенция вектора плотности тока даёт минус скорость накопления заряда в электродинамике (так как заряд сохраняется, то есть не исчезает и не появляется, а может только переместиться через границы какого-то объёма, чтобы накопиться в нём или уйти из него; а если и возникают или исчезают где-то положительные и отрицательные заряды — то только в равных количествах).

Векторное поле называется соленоидальным или вихревым, если через любую замкнутую поверхность S его поток равен нулю:

.

Если это условие выполняется для любых замкнутых S в некоторой области (по умолчанию - всюду), то это условие равносильно тому, что равна нулю дивергенция векторного поля :

всюду на этой области (подразумевается, что дивергенция всюду на этой области существует). Поэтому соленоидальные поля называют также бездивергентными.

Для широкого класса областей это условие выполняется тогда и только тогда, когда  имеет векторный потенциал, то есть существует некое такое векторное поле  (векторный потенциал), что  может быть выражено как его ротор:

Проще говоря, поле является вихревым, если оно не имеет источников. Силовые линии такого поля не имеют ни начала, ни конца, и являются замкнутыми. Вихревое поле порождается не покоящимися зарядами (источниками), а изменением связанного с ним поля (например, для электрического поля порождается изменением магнитного). Поскольку в природе не существует магнитных зарядов, то магнитное поле всегда является вихревым, и его силовые линии всегда замкнуты. Силовые линии постоянного магнита, несмотря на то, что выходят из его полюсов (словно имеют источники внутри), на самом деле замыкаются внутри магнита. Поэтому, разрезав магнит надвое, не удастся получить два отдельных магнитных полюса.

Соседние файлы в папке FTF 2 semestr.MARTINOV