
4.2. Электродинамическое действие токов короткого замыкания
Прохождение токов в проводниках приводит к возникновению между ними электродинамических (механических) усилий. Одинаковое направление токов в параллельных проводниках вызывает их притяжение, противоположное – их отталкивание. В режиме нормальной нагрузки механические силы взаимодействия незначительны, но при К3 они могут достигать значений, опасных для электрических аппаратов и ошиновок, вызвать их деформацию и даже разрушение.
Из теоретической электротехники известно, что сила взаимодействия между двумя проводниками при прохождение по ним токов i1 и i2 определяется по формуле
где i1 , i2 — мгновенные значения токов в проводниках, А; l — длина проводников, м; а — расстояние между осями проводников, м; Кф — коэффициент формы, учитывающий форму сечения и взаимное расположение проводников (для круглых проводников сплошного сечения, кольцевого сечения, шин коробчатого сечения с высотой сечения 0,1 м и более принимается Кф= 1 .
Наибольшие механические усилия между проводниками возникают в режиме короткого замыкания в момент, когда ток КЗ достигает ударного значения.
Для предотвращения механических повреждений под действием усилий, возникающих в проводниках при протекании по ним токов КЗ, все элементы токоведущей конструкции должны обладать электродинамической стойкостью, т. е. должны выдерживать механические усилия, возникающие при протекании токов КЗ, без деформаций, препятствующих их дальнейшей нормальной эксплуатации.
В зависимости от вида электрооборудования условия проверки его на электродинамическую стойкость различны. Например, заводы-изготовители указывают гарантированный ток КЗ iдин (или imах, или iпр.скв) при котором обеспечивается электродинамическая стойкость аппаратов (выключателей, разъединителей). При выборе их должно выполняться условие: iуд< iдин, кА.
Шинная конструкция обладает электродинамической стойкостью, если выполняются условия:
где σmах, σдоп — соответственно максимальное расчетное и допустимое напряжения в материале шин, МПа (см. табл. 4.2); Fmax, Fдоп — соответственно максимальная расчетная и допустимая механические нагрузки на изоляторы, Н (задается в каталогах).
В соответствии с ПУЭ проверка электродинамической стойкости гибких токопроводов на максимальное сближение и тяжение проводников при КЗ производится только при i уд >50 кА .
Не проверяются на электродинамическую стойкость аппараты и шины цепей трансформаторов напряжения при расположении их в отдельной камере; аппараты и проводники, защищенные предохранителями с плавкими вставками на ток до 60 А.
4.3. Термическое действие токов короткого замыкания
При протекании по проводникам электрического тока проводники нагреваются. При нагреве проводника током нагрузки часть выделенной теплоты рассеивается в окружающую среду, причем степень рассеивания зависит от условий охлаждения.
При протекании тока КЗ температура проводников значительно возрастает, так как токи при КЗ резко увеличиваются, а длительность КЗ мала, поэтому теплота, выделяющаяся в проводнике, не успевает передаться в окружающую среду и практически все идет на нагрев проводника. Нагрев проводника при КЗ может достигать опасных значений, приводя к плавлению или обугливанию изоляции, к деформации и плавлению токоведущих частей и т.п.
Критерием
термической стойкости проводников
являются допустимые
температуры нагрева их токами КЗ.
Проводник или аппарат считается термически стойким, если его температура нагрева в процессе КЗ не превышает допустимых величин. Условие термической стойкости в общем случае выглядит так, °С:
θ º кон ≤ θ ºдоп ,
где θº кон – конечное значение температуры проводника в режиме к.з.
Количественную оценку степени термического воздействия тока КЗ на проводники и электрические аппараты рекомендуется производить с помощью интеграла Джоуля
где iкt, — полный ток КЗ в произвольный момент времени t, А; tоткл — расчетная продолжительность КЗ, с.
Заводы-изготовители в каталогах приводят значения гарантированного среднеквадратичного тока термической стойкости (/тер, кА) и допустимого времени его протекания (tтер, с) для электрических аппаратов (выключателей, разъединителей, трансформаторов тока и др.).
В этом случае условие термической стойкости аппаратов в режиме КЗ выглядит так, кА2-с,
При проверке термической стойкости проводника, имеющего стандартное сечение q станд, мм2, должно быть выполнено условие