Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
131
Добавлен:
09.11.2013
Размер:
37.56 Кб
Скачать

Циркуля́цией ве́кторного по́ля по данному замкнутому контуру Γ называется криволинейный интеграл второго рода, взятый по Γ. По определению

где  — векторное поле (или вектор-функция), определенное в некоторой области D, содержащей в себе контур Γ — бесконечно малое приращение радиус-вектора  вдоль контура. Окружность на символе интеграла подчёркивает тот факт, что интегрирование производится по замкнутому контуру. Приведенное выше определение справедливо для трёхмерного случая, но оно, как и основные свойства, перечисленные ниже, прямо обобщается на произвольную размерность пространства.

Свойства циркуляции

Свойство аддитивности циркуляции: циркуляция по контуру есть сумма циркуляций по контурам  и , то есть 

Аддитивность

Циркуляция по контуру, ограничивающему несколько смежных поверхностей, равна сумме циркуляций по контурам, ограничивающим каждую поверхность в отдельности, то есть

Формула Стокса

Циркуляция вектора F по произвольному контуру Г равна потоку вектора  через произвольную поверхность S, ограниченную данным контуром.

где  — ротор (вихрь) вектора F.

В случае, если контур плоский, например лежит в плоскости OXY, справедлива теорема Грина

где  — плоскость, ограничиваемая контуром  (внутренность контура).

Соседние файлы в папке FTF 2 semestr.MARTINOV