
- •Вопросы по твердотельной электронике
- •Образование зон в полупроводниках
- •Собственная проводимость полупроводников
- •Донорная проводимость полупроводников (проводимость п-типа)
- •Акцепторная проводимость полупроводников (проводимость р-типа)
- •Движение свободных носителей заряда в полупроводнике
- •Фундаментальная система уравнений для свободных носителей в полупроводнике
- •Граничные условия Шокли для "р-п" – перехода
- •Вольтамперная характеристика идеального " р-п" – перехода
- •Обратная ветвь вах "р-п" - перехода. Пробой "р-п" - перехода
- •Контакт «полупроводник - металл»
- •Полупроводниковые диоды (основные виды, их полупроводниковые структуры и обозначения на схемах)
- •Переходные процессы в полупроводниковых диодах. Частотные свойства диодов.
- •Статические и динамические модели полупроводниковых диодов. Линеаризированная статическая модель полупроводникового диода.
- •Параметрический стабилизатор напряжения на стабилитроне.
- •Полупроводниковая структура и принцип работы биполярного транзистора
- •Работа биполярного транзистора.
- •Вах биполярного транзистора и его статические параметры.
- •Модель биполярного транзистора (модель Эбберса-Молла)
- •Биполярный транзистор как четырехполюсник, h-параметры. Графическое определение h -параметров.
- •Выбор рабочей точки биполярного транзистора.
- •Полевой транзистор как четырехполюсник, y-параметры. Графическое определение y-параметров.
- •Переходные процессы в тиристоре
- •Эффект di/dt в тиристорах.
- •Эффект du/dt в тиристорах
-
Статические и динамические модели полупроводниковых диодов. Линеаризированная статическая модель полупроводникового диода.
-
Параметрический стабилизатор напряжения на стабилитроне.
Стабилизатор напряжения — преобразователь электрической энергии, позволяющий получить на выходе напряжение, находящееся в заданных пределах при значительно больших колебаниях входного напряжения и сопротивления нагрузки.
Линейный стабилизатор
Линейный стабилизатор представляет собой делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. Преимущество линейного стабилизатора — простота, отсутствие помех и небольшое количество используемых деталей.
:
Параметрический: в таком стабилизаторе используется участок ВАХ прибора, имеющий большую крутизну.
Компенсационный: имеет обратную связь. В нём напряжение на выходе стабилизатора сравнивается с эталонным, из разницы между ними формируется управляющий сигнал для регулирующего элемента.
Параллельный параметрический стабилизатор на стабилитроне
Применяется для стабилизации напряжения в слаботочных схемах, так как для нормальной работы схемы ток через стабилитрон D1 должен в несколько раз (3-10) превышать ток в стабилизируемой нагрузке RL. Часто такая схема линейного стабилизатора применяется как источник опорного напряжения в более сложных схемах стабилизаторов. Для снижения нестабильности выходного напряжения, вызванной изменениями входного напряжения, вместо резистора RV применяется источник тока. Однако эта мера не уменьшает нестабильность выходного напряжения, вызванную изменением сопротивления нагрузки.
-
Полупроводниковая структура и принцип работы биполярного транзистора
Биполярный транзистор (обычно его называют просто транзистором) – это полупроводниковый прибор с двумя или более взаимодействующими выпрямляющими электрическими переходами, предназначенный для усиления и генерирования электрических сигналов.
Определение «биполярный» указывает на то, что работа транзистора связана с процессами, к которых принимают участие носители заряда, как электроны, так и дырки.
Структура биполярного транзистора представляет собой монокристалл полупроводника, в котором созданы три области с чередующимися типами электропроводности. На границах этих областей возникают электронно-дырочные переходы. От каждой области полупроводника сделаны токоотводы (омические контакты). Среднюю область транзистора, расположенную между электронно-дырочными переходами, называют базой (Б). Примыкающие к базе области обычно делают неодинаковыми. Одну из областей делают так, чтобы из неё наиболее эффективно проходила инжекция носителей в базу, а другую – так, чтобы p-n-переход между базой и этой областью наилучшим образом собирал инжектированные в базу носители, то есть осуществлял экстракцию носителей из базы.
Рис.
3.1. Схематическое изображение структуры
биполярного транзистора
Область транзистора, основным назначением которой является инжекция носителей в базу, называют эмиттером (Э), а p-n-переход между базой и эмиттером – эмиттерным (ЭП). Область транзистора, основным назначением которой является собирание, экстракция носителей заряда из базы, называют коллектором (К), а p-n-переход между базой и коллектором – коллекторным (КП). В зависимости от типа электропроводности крайних слоев (эмиттера и коллектора) различают транзисторы p-n-p и n-p-n типа.
Рис.
3.2. Условные обозначения транзисторов:
а
– транзистор p-n-p типа; б –
транзистор n-p-n типа