Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

A History of Science - v.4 (Williams)

.pdf
Скачиваний:
12
Добавлен:
28.10.2013
Размер:
532.51 Кб
Скачать

History of Science

31

Lavoisier was born in Paris, and being the son of an opulent family, was educated under the instruction of the best teachers of the day. With Lacaille he studied mathematics and astronomy; with Jussieu, botany; and, finally, chemistry under Rouelle. His first work of importance was a paper on the practical illumination of the streets of Paris, for which a prize had been offered by M. de Sartine, the chief of police. This prize was not awarded to Lavoisier, but his suggestions were of such importance that the king directed that a gold medal be bestowed upon the young author at the public sitting of the Academy in April, 1776. Two years later, at the age of thirty-five, Lavoisier was admitted a member of the Academy.

In this same year he began to devote himself almost exclusively to chemical inquiries, and established a laboratory in his home, fitted with all manner of costly apparatus and chemicals. Here he was in constant communication with the great men of science of Paris, to all of whom his doors were thrown open. One of his first undertakings in this laboratory was to demonstrate that water could not be converted into earth by repeated distillations, as was generally advocated; and to show also that there was no foundation to the existing belief that it was possible to convert water into a gas so "elastic" as to pass through the pores of a vessel. He demonstrated the fallaciousness of both these theories in 1768-1769 by elaborate experiments, a single investigation of this series occupying one hundred and one days.

Get any book for free on: www.Abika.com

History of Science

32

In 1771 he gave the first blow to the phlogiston theory by his experiments on the calcination of metals. It will be recalled that one basis for the belief in phlogiston was the fact that when a metal was calcined it was converted into an ash, giving up its "phlogiston" in the process. To restore the metal, it was necessary to add some substance such as wheat or charcoal to the ash. Lavoisier, in examining this process of restoration, found that there was always evolved a great quantity of "air," which he supposed to be "fixed air" or carbonic acid--the same that escapes in effervescence of alkalies and calcareous earths, and in the fermentation of liquors. He then examined the process of calcination, whereby the phlogiston of the metal was supposed to have been drawn off. But far from finding that phlogiston or any other substance had been driven off, he found that something had been taken on: that the metal "absorbed air," and that the increased weight of the metal corresponded to the amount of air "absorbed." Meanwhile he was within grasp of two great discoveries, that of oxygen and of the composition of the air, which Priestley made some two years later.

The next important inquiry of this great Frenchman was as to the composition of diamonds. With the great lens of Tschirnhausen belonging to the Academy he succeeded in burning up several diamonds, regardless of expense, which, thanks to his inheritance, he could ignore. In this process he found that a gas was given off which precipitated lime from water, and proved to be carbonic acid. Observing this, and experimenting with other substances known to give off carbonic acid in the same manner, he

Get any book for free on: www.Abika.com

History of Science

33

was evidently impressed with the now well-known fact that diamond

and charcoal are chemically the same. But

if he did really

believe it, he was cautious in expressing

his belief fully. "We

should never have expected," he says, "to

find any relation

between charcoal and diamond, and it would be unreasonable to

push this analogy too far; it only exists

because both substances

seem to be properly ranged in the class of combustible bodies, and because they are of all these bodies the most fixed when kept from contact with air."

As we have seen, Priestley, in 1774, had discovered oxygen, or "dephlogisticated air." Four years later Lavoisier first advanced his theory that this element discovered by Priestley was the universal acidifying or oxygenating principle, which, when combined with charcoal or carbon, formed carbonic acid; when combined with sulphur, formed sulphuric (or vitriolic) acid; with nitrogen, formed nitric acid, etc., and when combined with the metals formed oxides, or calcides. Furthermore, he postulated the theory that combustion was not due to any such illusive thing as "phlogiston," since this did not exist, and it seemed to him that the phenomena of combustion heretofore attributed to phlogiston could be explained by the action of the new element oxygen and heat. This was the final blow to the phlogiston theory, which, although it had been tottering for some time, had not been completely overthrown.

In 1787 Lavoisier, in conjunction with Guyon de Morveau,

Berthollet, and Fourcroy, introduced the reform in chemical

Get any book for free on: www.Abika.com

History of Science

34

nomenclature which until then had remained practically unchanged since alchemical days. Such expressions as "dephlogisticated" and "phlogisticated" would obviously have little meaning to a generation who were no longer to believe in the existence of phlogiston. It was appropriate that a revolution in chemical thought should be accompanied by a corresponding revolution in chemical names, and to Lavoisier belongs chiefly the credit of bringing about this revolution. In his Elements of Chemistry he made use of this new nomenclature, and it seemed so clearly an improvement over the old that the scientific world hastened to adopt it. In this connection Lavoisier says: "We have, therefore, laid aside the expression metallic calx altogether, and have substituted in its place the word oxide. By this it may be seen that the language we have adopted is both copious and expressive. The first or lowest degree of oxygenation in bodies converts them into oxides; a second degree of additional oxygenation constitutes the class of acids of which the specific names drawn from their particular bases terminate in ous, as in the nitrous and the sulphurous acids. The third degree of oxygenation changes these into the species of acids distinguished by the termination in ic, as the nitric and sulphuric acids; and, lastly, we can express a fourth or higher degree of oxygenation by adding the word oxygenated to the name of the acid, as has already been done with oxygenated muriatic acid."[9]

This new work when given to the world was not merely an epoch-making book; it was revolutionary. It not only discarded phlogiston altogether, but set forth that metals are simple elements, not compounds of "earth" and "phlogiston." It upheld

Get any book for free on: www.Abika.com

History of Science

35

Cavendish's demonstration that water itself, like air, is a compound of oxygen with another element. In short, it was scientific chemistry, in the modern acceptance of the term.

Lavoisier's observations on combustion are at once important and interesting: "Combustion," he says, ". . . is the decomposition of oxygen produced by a combustible body. The oxygen which forms the base of this gas is absorbed by and enters into combination with the burning body, while the caloric and light are set free. Every combustion necessarily supposes oxygenation; whereas, on the contrary, every oxygenation does not necessarily imply concomitant combustion; because combustion properly so called cannot take place without disengagement of caloric and light. Before combustion can take place, it is necessary that the base of oxygen gas should have greater affinity to the combustible body than it has to caloric; and this elective attraction, to use Bergman's expression, can only take place at a certain degree of temperature which is different for each combustible substance; hence the necessity of giving the first motion or beginning to every combustion by the approach of a heated body. This necessity of heating any body we mean to burn depends upon certain considerations which have not hitherto been attended to by any natural philosopher, for which reason I shall enlarge a little upon the subject in this place:

"Nature is at present in a state of equilibrium, which cannot have been attained until all the spontaneous combustions or oxygenations possible in an ordinary degree of temperature had

Get any book for free on: www.Abika.com

History of Science

36

taken place.... To illustrate this abstract view of the matter by example: Let us suppose the usual temperature of the earth a little changed, and it is raised only to the degree of boiling water; it is evident that in this case phosphorus, which is combustible in a considerably lower degree of temperature, would no longer exist in nature in its pure and simple state, but would always be procured in its acid or oxygenated state, and its radical would become one of the substances unknown to chemistry. By gradually increasing the temperature of the earth, the same circumstance would successively happen to all the bodies capable of combustion; and, at the last, every possible combustion having taken place, there would no longer exist any combustible body whatever, and every substance susceptible of the operation would be oxygenated and consequently incombustible.

"There cannot, therefore, exist, as far as relates to us, any combustible body but such as are non-combustible at the ordinary temperature of the earth, or, what is the same thing in other words, that it is essential to the nature of every combustible body not to possess the property of combustion unless heated, or raised to a degree of temperature at which its combustion naturally takes place. When this degree is once produced, combustion commences, and the caloric which is disengaged by the decomposition of the oxygen gas keeps up the temperature which is necessary for continuing combustion. When this is not the case--that is, when the disengaged caloric is not sufficient for keeping up the necessary temperature--the combustion ceases. This circumstance is expressed in the common language by saying that a body burns ill or with difficulty."[10]

Get any book for free on: www.Abika.com

History of Science

37

It needed the genius of such a man as Lavoisier to complete the refutation of the false but firmly grounded phlogiston theory, and against such a book as his Elements of Chemistry the feeble weapons of the supporters of the phlogiston theory were hurled in vain.

But while chemists, as a class, had become converts to the new chemistry before the end of the century, one man, Dr. Priestley, whose work had done so much to found it, remained unconverted. In this, as in all his life-work, he showed himself to be a most remarkable man. Davy said of him, a generation later, that no other person ever discovered so many new and curious substances as he; yet to the last he was only an amateur in science, his profession, as we know, being the ministry. There is hardly another case in history of a man not a specialist in science accomplishing so much in original research as did this chemist, physiologist, electrician; the mathematician, logician, and moralist; the theologian, mental philosopher, and political economist. He took all knowledge for his field; but how he found time for his numberless researches and multifarious writings, along with his every-day duties, must ever remain a mystery to ordinary mortals.

That this marvellously receptive, flexible mind should have refused acceptance to the clearly logical doctrines of the new chemistry seems equally inexplicable. But so it was. To the

Get any book for free on: www.Abika.com

History of Science

38

very last, after all his friends had capitulated, Priestley kept up the fight. From America he sent out his last defy to the enemy, in 1800, in a brochure entitled "The Doctrine of Phlogiston Upheld," etc. In the mind of its author it was little less than a paean of victory; but all the world beside knew that it was the swan-song of the doctrine of phlogiston. Despite the defiance of this single warrior the battle was really lost and won, and as the century closed "antiphlogistic" chemistry had practical possession of the field.

III. CHEMISTRY SINCE THE TIME OF DALTON

JOHN DALTON AND THE ATOMIC THEORY

Small beginnings as have great endings--sometimes. As a case in point, note what came of the small, original effort of a self-trained back-country Quaker youth named John Dalton, who along towards the close of the eighteenth century became interested in the weather, and was led to construct and use a crude water-gauge to test the amount of the rainfall. The simple experiments thus inaugurated led to no fewer than two hundred thousand recorded observations regarding the weather, which formed the basis for some of the most epochal discoveries in meteorology, as we have seen. But this was only a beginning. The simple rain-gauge pointed the way to the most important generalization of the nineteenth century in a field of science with which, to the casual observer, it might seem to have no

Get any book for free on: www.Abika.com

History of Science

39

alliance whatever. The wonderful theory of atoms, on which the whole gigantic structure of modern chemistry is founded, was the logical outgrowth, in the mind of John Dalton, of those early studies in meteorology.

The way it happened was this: From studying the rainfall, Dalton turned naturally to the complementary process of evaporation. He was soon led to believe that vapor exists, in the atmosphere as an independent gas. But since two bodies cannot occupy the same space at the same time, this implies that the various atmospheric gases are really composed of discrete particles. These ultimate particles are so small that we cannot see them--cannot, indeed, more than vaguely imagine them--yet each particle of vapor, for example, is just as much a portion of water as if it were a drop out of the ocean, or, for that matter, the ocean itself. But, again, water is a compound substance, for it may be separated, as Cavendish has shown, into the two elementary substances hydrogen and oxygen. Hence the atom of water must be composed of two lesser atoms joined together. Imagine an atom of hydrogen and one of oxygen. Unite them, and we have an atom of water; sever them, and the water no longer exists; but whether united or separate the atoms of hydrogen and of oxygen remain hydrogen and oxygen and nothing else. Differently mixed together or united, atoms produce different gross substances; but the elementary atoms never change their chemical nature--their distinct personality.

It was about the year 1803 that Dalton first gained a full grasp of the conception of the chemical atom. At once he saw that the

Get any book for free on: www.Abika.com

History of Science

40

hypothesis, if true, furnished a marvellous key to secrets of matter hitherto insoluble--questions relating to the relative proportions of the atoms themselves. It is known, for example, that a certain bulk of hydrogen gas unites with a certain bulk of oxygen gas to form water. If it be true that this combination consists essentially of the union of atoms one with another (each single atom of hydrogen united to a single atom of oxygen), then the relative weights of the original masses of hydrogen and of oxygen must be also the relative weights of each of their respective atoms. If one pound of hydrogen unites with five and one-half pounds of oxygen (as, according to Dalton's experiments, it did), then the weight of the oxygen atom must be five and one-half times that of the hydrogen atom. Other compounds may plainly be tested in the same way. Dalton made numerous tests before he published his theory. He found that hydrogen enters into compounds in smaller proportions than any other element known to him, and so, for convenience, determined to take the weight of the hydrogen atom as unity. The atomic weight of oxygen then becomes (as given in Dalton's first table of 1803) 5.5; that of water (hydrogen plus oxygen) being of course 6.5. The atomic weights of about a score of substances are given in Dalton's first paper, which was read before the Literary and Philosophical Society of Manchester, October 21, 1803. I wonder if Dalton himself, great and acute intellect though he had, suspected, when he read that paper, that he was inaugurating one of the most fertile movements ever entered on in the whole history of science?

Be that as it may, it is certain enough that Dalton's

Get any book for free on: www.Abika.com