Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛЕКЦИИ.doc
Скачиваний:
168
Добавлен:
10.06.2015
Размер:
1.03 Mб
Скачать

1. Понятие о земном эллипсоиде и сфере

Известно, что Земля шарообразна, т.е. не обладает формой идеального шара. Фигура ее неправильна, и, как всякое вращающееся тело, она немного сплюснута у полюсов. Кроме того, из-за неравномерного распределения масс земного вещества и тектонических деформаций Земля имеет обширные выпуклости и вогнутости. В силу этого земную поверхность заменяют некоторой правильной поверхностью, которая носит название поверхности относимости.

В самом точном приближении такой поверхностью является поверхность геоида (фигура, ограниченная уровенной поверхностью океана). Точно определить его форму практически невозможно. Поэтому в теории и практике картографии за поверхность относимости принимают земной эллипсоид, либо сферу определенного радиуса (при создании мелкомасштабных карт (когда можно пренебречь полярным сжатием).

Земной эллипсоид – это эллипсоид вращения с малым сжатием, размеры которого выбраны таким образом, чтобы для заданной территории он наименее уклонялся от геоида. При этом полагают, что плоскость экватора и центр эллипсоида вращения совпадают с плоскостью экватора и центром масс Земли. Такой земной эллипсоид иначе называют референц-эллипсоидом.

Постановлением Совета Министров от 7 апреля 1946 г. за такой референц-эллипсоид у нас в стране принят референц-эллипсоид Красовского. Он  имеет следующие параметры:

a = 6 378 245 км – большая полуось;

b = 6 356 863 км – малая полуось;

с = 1 : 298,3  – полярное сжатие.

Рис.1. Эллипсоид вращения и его элементы

Эллипсоид вращения образуется вращением эллипса PNE1PSE2 вокруг полярной оси PNPS (рис. 1). Точки PN, PS являются, соответственно, северным и южным полюсами эллипсоида. Они получаются сечением оси PNPS  поверхности эллипсоида.

Сечения поверхности эллипсоида вращения плоскостями, параллельными плоскости экватора, образуют окружности – параллели. Сечения поверхности эллипсоида вращения плоскостями, проходящими через ось вращения, образуют эллипсы – меридианы.

Пусть О'К' – нормаль к поверхности эллипсоида в точке К (рис. 1). Плоскости, проходящие через нормаль, называются нормальными плоскостями. Сечения этих плоскостей с поверхностью эллипсоида дают нормальные сечения, или вертикалы. Тогда меридиан – это нормальное сечение, плоскость которого проходит через полярную ось. Нормальное сечение, перпендикулярное плоскости меридиана PNЕ1PSЕ2, дает сечение 1-го вертикала.

Радиусы кривизны этих сечений определяются следующими формулами:

–радиус кривизны меридиана;

–радиус кривизны 1-го вертикала;

где – 1-й эксцентриситет;

a и b – большая и малая полуоси эллипсоида вращения.

Радиус параллели (r) вычисляется через радиус кривизны первого вертикала

2. Система координат на поверхности эллипсоида и сферы

Положение точки на поверхности эллипсоида может быть определено в той или иной системе координат. Основная система координат – географическая с  φ, λ (рис. 2).

Рис. 2. Система географических координат на эллипсоиде вращения

Географическая широта (φ)  есть угол между плоскостью экватора и нормалью ОМ (отвесная линия) текущей точки М (рис. 2). Широта меняется от 0 до 90°.

Географическая долгота (λ) есть двугранный угол между плоскостями начального меридиана и меридиана текущей точки М. Долгота изменяется от 0 до 180° на запад и восток от начального меридиана. При картографических расчетах западные долготы берутся со знаком «минус», восточные – со знаком «плюс».

Кроме рассмотренной системы координат, существует целый ряд других, используемых в математической картографии:

- прямоугольная сфероидическая;

- сферическая полярная и др.

Под координатными линиями следует понимать геометрические места точек, для которых одна из координат постоянна. Например, параллель есть геометрическое место точек равных широт (φ  = const), а меридиан есть геометрическое место точек равных долгот (λ = const).

Рис. 3. Система географических координат на сфере

В тех случаях, когда Земля принимается за сферу, географическими координатами называют сферические координаты φ, λ с полюсом системы координат, совпадающим с географическим полюсом (рис. 3).