
- •Министерство рф по связи и информатизации
- •Средства обеспечения освоения дисциплины
- •Идеальные источники электрической энергии
- •Понятия об электрической цепи и схеме
- •Расчет цепей на постоянном токе
- •Законы Кирхгофа
- •Переменные токи и напряжения Основные понятия и параметры
- •Понятия о комплексных и полных сопротивлениях электрической цепи Если напряжение гармоническое , то ток то же будет гармоническим
- •Гармонический ток в пассивных элементах электрической цепи
- •Параллельные rlc - цепи
- •Принцип дуальности в электрических цепях
- •1 Закон Кирхгофа 2 закон Кирхгофа
- •Метод токов ветвей (мтв)
- •Метод контурных токов
- •5. Общая стандартная форма записи системы уравнений по мкт
- •6. Применение мкт
- •Принцип и метод наложения в теории цепей.
- •Теоремы об эквивалентных источниках или генераторах (Теорема об автономном двухполюснике)
- •1)В первом случае получим вместо активной цепи пассивизированную цепь (без внутренних источников):
- •2) Поставим задачу, чтобы .
- •Теорема обратимости или взаимности
- •Примеры
- •Последовательный колебательный контур
- •Частотные характеристики последовательного контура
- •Влияние внешнего сопротивления на избирательность контура
- •Параллельный колебательный контур (простой)
- •1. Идеализированный контур
- •2. Реальный параллельный контур - это цепь из параллельно соединенных конденсатора и катушки индуктивности.
- •3. Частотные зависимости параллельного контура
- •Расчетные графики частотных зависимостей напряжения
- •Сложные параллельные контуры
- •Расчет мощности в комплексной форме
- •Электрические цепи с взаимно индуктивными связями и методы их расчета Основные понятия о взаимной индукции
- •Последовательное и параллельное соединения индуктивно связанных элементов
- •1. Последовательное соединение
- •2. Параллельное соединение
- •Электрический трансформатор
- •1. Идеальный трансформатор при гармоническом воздействии.
- •2.Уравнения и схемы замещения реального трансформатора (двухобмоточного, без ферромагнитного сердечника)
- •3. Входное сопротивление реального трансформатора
- •Переходные процессы в электрических цепях Основные понятия о переходных процессах
- •Законы коммутации
- •Начальные и конечные условия
- •Схемы замещения элементов в различные моменты времени
- •IL (0_) l пост
- •2) Не нул. Нач. Усл. L ul→источник тока
- •Схемы замещения l и c зависят от источника. Классический метод расчета переходных процессов
- •Анализ переходных процессов в rlc цепях классическим методом Последовательные rl и rc цепи
- •2Закон Киргофа
- •2) Если отключить на перемычку, то все процессы пойдут в обратную сторону → индуктивность и емкость будут отдавать накопленную энергию.
- •, Откуда .
- •Отключение источника в последовательной rlc-цепи
- •Расчет переходных процессов в сложных цепях
- •1Ур по 1 закону Киргофа и 2ур по 2закону Киргофа
- •Преобразования Лапласса
- •1 Закон Кирхгофа
- •2 Закон Кирхгофа.
- •Операторные схемы замещения реактивных элементов
- •Нахождение функции времени в операторном методе
- •Операторные передаточные функции
- •Методы расчета передаточных функций
- •Временные характеристики электрических цепей
- •Методики расчета временных характеристик
- •Пример нахождения временных характеристик
- •Расчет откликов в электрической цепи на кусочно-непрерывное воздействие. (Интеграллы Дюамеля и наложения)
- •Определение отклика на прямоугольный импульс.
- •Интегрирующие цепи
- •5. Спектральный метод расчета в электрических цепях
- •5.1.Понятие о спектре периодического сигнала
- •5.2.Спектральный анализ и синтез на основе рядов Фурье
- •5.3.Графическое временное и частотное изображения спектра периодического сигнала
- •5.4.Спектр последовательности прямоугольных импульсов
- •Понятие о расчете цепей при периодических сигналах
- •5.6.Понятие о спектре непериодического сигнала
- •Если , то. Если , то.
- •Спектры некоторых типовых сигналов
- •Понятие об энергетическом спектре одиночных сигналов. Ширина спектра
- •5.9.Спектральный или частотный метод расчета в тц
- •5.11.Прохождение импульсных сигналов через цепь с ограниченной полосой пропускания
- •1) Сигнал δ(t) – единичная импульсная функция
- •2) Σ(t) – единичная ступенчатая функция(скачок)
- •3) Прямоугольный импульс
- •Нелинейные электрические цепи Основные понятия о нелинейных цепях
- •2) Дифференциальным сопротивлением
- •Расчет простейших нелинейных резистивных цепей
- •1) Последовательное соединение
- •2) Параллельное соединение
- •3) Смешанное соединение
- •4) Сложное соединение с одним нелинейным элементом
- •Аппроксимация характеристик нелинейных элементов
- •6.4. Определение реакции нелинейного элемента на гармоническое
- •Решая данную систему уравнений относительно неизвестных спектральных составляющих можно найти амплитуды гармоник.
- •Спектр амплитуд тока диода
Параллельные rlc - цепи
U=I·Z=I/Y
Y
– комплексная проводимость, B
– реактивная Рассмотрим схему с
параллельными RLC
- элементами:
Все
ее элементы соединены параллельно и
находятся под одним и тем же напряжением
u(t)=Um▪sin(t+u).
Необходимо определить ток в цепи i(t).
На основании 1-го закона Кирхгофа в
любой момент времени справедливо
соотношение
i(t)=iR(t)+iL(t)+iC(t)
.
Отдельные составляющие токов
определяются выражениями
Подставив
вместо u(t)
гармоническую функцию времени и проведя
необходимые математические операции,
получим
Будем
определять искомый ток в виде
i(t)=Im▪sin(t+i).
Перейдем
к комплексным мгновенным значениям.
Сокращая
на ejt
и учтя, что
,
получим
или
Выражение
в скобках–
комплексная проводимость цепи Y
,
–
резистивная составляющая проводимости,
–
реактивная составляющая проводимости.
и она может быть равна 0
на
какой-то частоте ω0,
которую называют резонансной.
Закон
Ома в комплексной форме для цепи
записывается
или
Отсюда следует, что при параллельном соединении ветвей цепи комплексная эквивалентная проводимость равна сумме комплексных проводимостей ветвей:
Проанализируем
векторную диаграмму параллельной RLC
- цепи
Напряжение взято как опорный вектор, ток в резисторе совпадает по фазе с напряжением , ток в индуктивности отстает на 900, а ток емкостной опережает на 900 и меньше (ω<ω0). Общий ток равен сумме векторов всех токов и он отстает от напряжения по фазе.
Принцип дуальности в электрических цепях
В электрических цепях есть некоторые понятия, которые с одной стороны противоположны друг другу, а с другой стороны взаимосвязаны и дополняют друг друга (из физики: электромагнитное поле - электрическое поле и магнитное поле). Такие понятия, величины называются дуальными.
У дуальных величин формы записи и математические уравнения одинаковы.
Напряжение ток
контур узел
1 Закон Кирхгофа 2 закон Кирхгофа
сопротивление проводимость
U=I·Z I=U·Y
L C
последовательная цепь параллельная цепь
ИИН ИИТ
Формулы, полученные для некоторой цепи можно формально распространить на дуальные величины в дуальной цепи. Дуальные величины ведут себя одинаково в дуальных цепях, а такие же будут вести себя противоположно в тех же условиях.
Метод токов ветвей (мтв)
МТВ основан на непосредственном применении законов Кирхгофа к электрической цепи, приводит к решению системы уравнений. Применяется для сложной цепи, особенно если нельзя определить эквивалентное сопротивление цепи или в цепи действует несколько источников.
В качестве основных неизвестных в МТВ используют токи ветвей. В качестве дополнительных неизвестных рассматривают напряжения на идеальных источниках тока. Начинают с определения структурных параметров (количество узлов, независимых контуров, ветвей). По первому закону Кирхгофа составляется (NУЗ-1) уравнений. По второму закону составляется столько уравнений, сколько независимых контуров в цепи NНК. Причем эти уравнения целесообразно разделить на основные и дополнительные. Поэтому соответственно контуры разделяют на основные и дополнительные. В основные контуры не должны входить идеальные источники тока. Каждый дополнительный контур должен содержать по одному идеальному источнику тока. Дополнительные уравнения, содержащие напряжения на источниках тока, не включают в систему уравнений, а записывают отдельно.
Рассмотрим на примере.
Nуз=3 NуIзк=2 Nосн.ур.=2
Nнк=3 NуIIзк=3 Nдоп.ур.=1. Число неизвестных токов здесь 4 (I1, I3, I4 ,I5)
Для составления системы необходимо выбрать направления токов
Система уравнений решается и находятся неизвестные токи.
Доп.
уравнение:
.
Из него находятUJ2.