- •Федеральное агентство связи
- •Введение
- •На рис.1 представлен график периодического изменения функции f(X), которое характеризуется параметрами:
- •Способы представления колебательных движений:
- •Аналитическое. Колебательный процесс описывается в виде периодической функции, например,
- •6. Метод фазовых траекторий.
- •Способы представления колебательных движений: Аналитический, табличный, графический, спектральный, векторные диаграммы, фазовый портрет
- •Лекция 2. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения. Сложение взаимно перпендикулярных колебаний
- •Одиночный прямоугольный импульс.
- •Экспоненциальный импульс.
- •Гауссов импульс. Колоколообразный (гауссовский) импульс определяется выражением
- •Спектр широкополосного случайного процесса. Белый шум
- •Лекция 4. Свободные колебания в системах с одной степенью свободы Пружинный маятник (http://www.All-fizika.Com/virtual/pryjin.Php)
- •Колебание жидкости в трубке.
- •Свободные колебания в контуре
- •Лекция 5. Фазовый портрет колебательной системы.
- •Свободные затухающие колебания пружинного маятника
- •Уравнение вынужденных колебаний и его решение. Резонанс.
- •Установление колебаний.
- •Лекция 8. Колебания систем со многими степенями свободы.
- •Тоны и обертоны
- •Колебания воздушного столба
- •Колебания струны, закрепленной с двух концов
- •Лекция 9. Параметрические колебания. Качели.
- •Автоколебания.
- •Приложение 1. Основные характеристики звука
- •Закон Вебера-Фехнера. Диаграмма слуха.
- •Некоторые сведения о музыкальных инструментах.
- •Приложение 2 Добротность различных колебательных систем
- •Приложение3 Резонаторы
- •Основные формулы механических и электромагнитных колебаний
- •Словарь терминов
- •Метод комплексных амплитуд
- •Вынужденные колебания с произвольной частотой.
- •Возбуждение стоячих волн в шнуре. Моды колебаний.
Закон Вебера-Фехнера. Диаграмма слуха.
Определение громкости звука основано на психофизическом законе, установленном в 1846 году Э.-Г. Вебером, который заложил основы "психометрии", т.е. количественных измерений ощущений. Поскольку ощущение является субъективным процессом, то абсолютные измерения силы ощущений невозможны, и Вебер перенес проблему в область измерения относительных величин и искал минимальные различия в ощущениях, которые можно зафиксировать.
Суть закона Вебера заключается в том, что минимальное изменение интенсивности звука которое различает человеческое ухо, не зависит от интенсивности слышимого звука и составляет приблизительно 10% от ее величины:
(5.25) |
Помимо слуховых ощущений, Вебер изучал также осязание и зрение и установил, что для осязания минимальное различие в ощущении тяжести груза не зависит от величины этого груза и составляет ~ 1/30, а для зрения минимальная воспринимаемая разница в интенсивности света также не зависит от величины интенсивности и составляет ~ 1/100.
Исходя из закона Вебера, можно построить шкалу уровня ощущения звука, или шкалу громкости записав следующее соотношение:
(5.26) |
где - прирост громкости, обусловленный приростом интенсивности, - коэффициент, определяющий масштаб шкалы. Интегрируя (5.26), получаем:
(5.27) |
Для того, чтобы вызвать звуковое ощущение, волна должна обладать некоторой минимальной интенсивностью и соответственно, некоторым минимальным звуковым давлением которое называется порогом слышимости. Естественно, что при громкость Следовательно,
(5.28) |
Если выбрать то (5.28) перепишется в виде
(5.29) |
Это соотношение называется законом Вебера-Фехнера и отражает тот факт, что чувствительность уха человека к звуку меняется, как логарифм интенсивности звука. Аналогичные (5.29) соотношения были установлены Э.-Г. Вебером и Г.-Т. Фехнером и для других ощущений, даваемых органами чувств человека, - осязания и зрения (Фехнеру принадлежит большое количество работ по "психофизике", которую он определял, как "точную науку о функциональных зависимостях между телом и душой, общее - между материальным и духовным, физическим и психическим миром").
На рис. 5.12 изображена "диаграмма слуха", на которой показаны области частот и звуковых давлений, а также уровни интенсивности звуков, воспринимаемых человеческим ухом. Нормальное ухо слышит только те звуки, которые лежат внутри этой области. Нижняя граница области характеризует зависимость порога слышимости от частоты, а верхняя - порог болевого ощущения, когда волна перестает восприниматься как звук, вызывая в ухе ощущение боли и давления. Отметим, что человеческое ухо является уникальным приемником акустических волн, воспринимающим звуки, различающиеся по интенсивности на 12-15 порядков в области частот около 1 кГц, где диаграмма слуха имеет наибольшее вертикальное сечение. Из диаграммы видно, что при одинаковом звуковом давлении и одинаковой интенсивности звуки различной частоты могут восприниматься, как звуки разной громкости Поэтому в акустике, помимо субъективной величины - громкости звука оцениваемой на слух, используются и объективные характеристики звука, которые могут быть непосредственно измерены, - уровень звукового давления и равный ему уровень интенсивности. Поскольку согласно (5.17) интенсивность пропорциональна квадрату звукового давления, обе эти характеристики определяются формулой:
(5.30) | |
|
|
Рис..1.7
В принципе, - величина безразмерная, но для численного значения логарифма используют название "Бел" (в честь изобретателя телефона Г. Белла). На практике обычно используют в 10 раз меньшую единицу - "децибел", так что (5.30) принимает вид:
(5.30а) |
В определении принято использовать стандартный порог слышимости а соответствующее ему значение минимальной интенсивности зависит, согласно (5.17), от среды, в которой распространяется звук, и для воздуха при нормальных условиях составляет
Для громкости звука используют единицу под названием "фон". Громкость тона в фонах для любой частоты равна уровню звукового давления в децибелах для тона с частотой воспринимаемого как звук той же громкости.
На рис. 5.12 изображены также кривые для уровней равной громкости при различных уровнях звукового давления и интенсивности, из которых видно, что при а для других слышимых ухом частот и могут заметно отличаться.