- •Метод рекомбинантных ДНК
- •Генетическая инженерия или техника рекомбинантных ДНК - это совокупность приемов, позволяющих путем операций
- •В 1972 г. была создана первая рекомбинантная молекула ДНК, состоящая из фрагмента ДНК
- •Общий принцип генной инженерии.
- •Общая схема молекулярного клонирования:
- •Получение генов.
- •Выделение генов из ДНК проводят с помощью рестриктаз, катализирующих расщепление ДНК на участках,
- •Сшивка по одноименным "липким" концам (рестриктазно лигазный метод)
- •Химико-ферментный синтез применяют в том случае, если известна первичная структура белка или пептида,
- •Ферментный синтез гена на основе выделенной матричной РНК (мРНК) является в настоящее время
- •Обратная
- •Полученный тем или иным способом ген содержит информацию о структуре белка, но сам
- •Перенос генетической информации в клетку реципиента осуществляется в составе вектора.
- •Существует несколько типов векторов: бактериальные плазмиды, вирусы, бактериофаги, гибридные вектора, содержащие ДНК фага
- •Конструирование рекомбинантных ДНК осуществляется in vitro с
- •Плазмида pBR322
- •Отбор рекомбинантных векторов
- •Техника использования плазмиды pBR322для отбора рекомбинантных клеток
- •Геномные библиотеки, клонирование ДНК in vivo
- •Клонирование ДНК in vivo
- •Клонирование ДНК - процесс получения множества идентичных Клонирование ДНК
- •Библиотека кДНК.
- •Подготовка ДНК
- •Преимущества клоновой ДНК перед клонами геномной ДНК в том, что кодирующая белок нуклеотидная
- •Библиотеки фрагментов ДНК
- •Амплификация ДНК с помощью полимеразной цепной реакции (ПЦР).
- •Скрининг и отбор рекомбинантных клеток.
- •На первой стадии идентифицируют и отбирают клетки, несущие вектор, на основе которого осуществлен
- •На второй стадии отбирают клетки, несущие вектор и ген- мишень. Для этого используют
- •Скрининг библиотеки ДНК
- •Иногда известно только приблизительное расположение гена на хромосоме. Зная последовательность генов, расположенных по
- •Хромосомная
- •Заполнение пробелов: «прогулка по хромосоме»
- •Характеристика клонированных последовательностей
- •Построение рестрикционной карты по сайтам рестриктаз
- •Блоттинг (блот-гибридизация) нуклеиновых кислот
- •Разрезание
- •Основные проблемы, возникающие при генетических манипуляциях, заключаются в следующем:
- •Развитие техники рекомбинантных ДНК позволяет проводить выделение генов эукариот и экспрессировать их в
- •Разделы геномики:
- •Итог структурной геномики – получение последовательности нуклеотидов (сиквенса sequence), которая представляла бы полностью
- •Для того, чтобы получить такой сиквенс, сегодня приходится определять последовательность нуклеотидов в достаточно
- •Например, в геноме человека 3*109 п.н. случайно может встретится последовательность длиной 15 нуклеотидов
- •Но дело в том, что в ДНК нуклеотиды расположены не случайно, и это
- •Как это можно было сделать? Нужно было поставить какие-нибудь «метки» в геноме человека,
- •Полиморфизм ДНК. Основные типы генетических маркеров
- •В основе детекции ДНК маркеров лежит метод амплификации (размножения) фрагментов ДНК in vitro
- •Описанный подход применяется не только в фундаментальных исследованиях , но и в практике
- •Генетическая карта была первой картой генома человека, на основе которой строилась дальнейшая работа
- •Физические карты генома часто представлены наборами фрагментов ДНК, клонированные в векторных молекулах (рекомбинантных
- •Существуют две стратегии для секвенирования больших участков ДНК.
- •Подходы к физическому картированию: картирование «сверху вниз» и «снизу вверх»
- •Существуют два основных метода секвенирования химический и
- •Это используется следующим образом. У нас есть матрица (нить ДНК), которую надо секвенировать.
- •Рис. 3,10 Чтение последовательности ДНК.
- •Типы геномных карт
- •Карты генома с разным уровнем разрешения
- •Проект генома человека начат в 1990 г. Первая (черновая) версия последовательности нуклеотидов была
- •Кроме данных о последовательности нуклеотидов геномной ДНК человека (референтная последовательность) созданы также базы
- •Гомологичные хромосомы можно отличить по фрагментам рестрикции, если их нуклеотидные
- •Полиморфизм длин фрагментов рестрикции для выявления серповидно-клеточной анемии.
- •Полиморфизм длин рестрикционных фрагментов (ПДРФ)
- •ДНК дактилоскопия в деле об убийстве.
- •Небольшое количество коротких тандемных повторов (STR, или микросателлитов), состоящих из 2-9 повторов н.п.,
- •Варьирующие по числу тандемные повторы (VNTRs, или минисателлиты) содержат повторяющиеся кластеры в 10-100
- •Как исследовать, действительно ли ген существует, то есть транскрибируется ли данный участок ДНК?
- •Для этого ген представляют в чипе частью его последовательности – олигонуклеотидом, который иммобилизован
- •В реальном эксперименте все участки на матрице в той или иной мере «светятся».
- •При этом сравнивают транскрипцию гена в разных тканях, в них гены экспрессируются по-разному.
- •Гибридизация на микрочипах позволяет проверить компьютерное предсказание о том, что данный фрагмент генома
- •Котранскрибируемые экзоны (границы гена) выявляются экспериментально на чипе. Соседние площадки содержат олигонуклеотиды, соответствующие
- •Следующий опыт. Взяли образцы РНК из опухолей у двух групп больных. В одной
- •Обзор методов для картирования и секвенирования
- •ПЦР-амплификация С помощью полимеразной цепной реакции (ПЦР), исследователи могут непосредственно усиливать отдельные участки
Ферментный синтез гена на основе выделенной матричной РНК (мРНК) является в настоящее время наиболее распространенным методом. Сначала из клеток выделяют матричные РНК, среди которых присутствует мРНК, кодируемая геном, который требуется выделить. Затем в подобранных условиях на выделенной из клетки мРНК, как на матрице, с помощью обратной транскриптазы (ревертазы) синтезируется нить ДНК, комплементарная мРНК (кДНК). Полученная комплементарная ДНК (кДНК) служит матрицей для синтеза второй нити ДНК с использованием ДНК-полимеразы или ревертазы. Затравкой при этом служит олигонуклеотид, комплементарный 3’-концу мРНК; новая цепь ДНК образуется из дезоксинуклеозидтрифосфатов. Метод с большим успехом применен для получения в 1979 г. гена гормона роста человека (соматотропина).
Обратная
трансляция.
Аминокислотная
последовательность может быть "обратно транслирована" в вырожденные последовательности ДНК, которые могут быть запрограммированы в ДНК-синтезаторе для создания набора олигонуклеотидов, которые должны включать один, присутствующий в реальной геномной ДНК.
Полученный тем или иным способом ген содержит информацию о структуре белка, но сам не может ее реализовать. Поэтому нужны дополнительные механизмы для управления действием гена.
Перенос генетической информации в клетку реципиента осуществляется в составе вектора.
Вектор - молекула ДНК или РНК, состоящая из двух компонентов: векторной части (носителя) и клонируемого чужеродного гена. Задача вектора – донести выбранную ДНК в клетку-реципиент, встроить ее в геном,
позволить идентификацию трансформированных клеток, обеспечить стабильную экспрессию введенного гена.
Существует несколько типов векторов: бактериальные плазмиды, вирусы, бактериофаги, гибридные вектора, содержащие ДНК фага и плазмиды (космиды и фазмиды), транспозоны, искусственные хромосомы. Основное различие – в длине встраиваемого фрагмента чужеродной ДНК.
Конструирование рекомбинантных ДНК осуществляется in vitro с
изолированными ДНК при помощи эндонуклеаз рестрикции, которые расщепляют вектор в одном участке, превращая его из кольцевой формы в линейную с образованием липких концов, комплементарных концам вводимой ДНК. Комплементарные концы вектора и вводимого гена сшиваются лигазой. Полученную рекомбинантную ДНК с помощью той же ДНК-лигазы замыкают с образованием кольцевой молекулы.
Плазмида pBR322
Отбор рекомбинантных векторов
Плазмида pBR322 - популярный вектор для клонирования.
- два гена устойчивости к антибиотикам (ампициллину и тетрациклину) -три одиночных сайта рестрикции (сайта для клонирования):
EcoRI (в некодирующей части) PstI (в гене Amp-r)
SalI (в гене Tet-r)
Рекомбинантные плазмиды со вставкой по EcoRI устойчивы к Amp и Tet
по PstI - устойчивы к Tet, чувствительны к Amp по SalI - устойчивы к Amp, чувствительны к Tet
