Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
149
Добавлен:
09.06.2015
Размер:
717.82 Кб
Скачать

Измерение относительной влажности воздуха

Цель работы. Ознакомление с величинами, характеризующими содержание водяного пара в воздухе. Овладение методикой измерения относительной влажности воздуха.

Приборы и принадлежности: психрометр, пипетка.

Введение

Влага оказывает существенное влияние на многие процессы, происходящие на Земле, поскольку она, являясь одним из основных компонентов окружающего нас мира, входит в состав биосферы, разнообразных материалов и т. д. Характер и скорость протекания различных процессов в твёрдых, жидких и газообразных веществах зачастую определяется наличием в них влаги; с разнообразием форм проявления её влияния связан широкий диапазон задач и технических требований к средствам измерения влажности в различных средах. В данной работе измеряется влажность газообразной среды - воздуха. Подобную задачу приходится решать при метеорологическом прогнозировании погоды, конструировании устройств кондиционирования воздуха, создания вентиляционных, сушильных и холодильных установок для хранения и перевозки скоропортящихся грузов. В жилых и производственных помещениях определённое значение влажности воздуха - одно из условий нормального самочувствия человека; в музеях и библиотеках - условие оптимального хранения экспонатов и книг; в цехах и складских помещениях - залог нормального протекания биохимических реакций, предотвращения коррозии и т. д.

Незагрязнённый влажный воздух является смесью азота, кислорода, углекислого и других газов, входящих в состав сухого воздуха, с водяным паром. Поведение сухого воздуха, который в первом приближении можно считать идеальным газом, хорошо описывается законом Дальтона и уравнением Клапейрона - Менделеева.

Согласно закону Дальтона давление смеси химически невзаимодействующих газов равно сумме их парциальных давлений:

p , (1)

г

33

деp - общее давление газовой смеси, а pi - парциальное давление i- го газа, входящего в состав смеси (парциальным называется давление, которое имел бы этот газ, если бы один занимал объём, равный объёму смеси при той же температуре).

Уравнение Клапейрона-Менделеева запишем в виде

pi V RT, (2)

где pi- парциальное давление i- го газа, входящего в смесь, mi - масса этого газа, i - его молярная масса. (Молярной массой называют массу одного моля вещества. 1 моль - количество вещества, содержащее столько же структурных элементов: молекул, атомов, ионов, сколько содержится атомов в 0,012 кг изотопа углерода 12С). V - объём, занимаемый смесью, T - её термодинамическая температура; а R - универсальная газовая постоянная, равная 8,31 Джмоль1К1.

В отличие от других газов, входящих в состав воздуха, водяной пар можно считать идеальным газом только в определённых условиях. Типичным примером ситуации, когда существенным становится отклонение его поведения от поведения идеального газа, является процесс конденсации. В то же время на практике (при достаточно малом содержании влаги в воздухе) такое отклонение невелико. При этом полное (барометрическое) давление влажного воздуха p можно выразить в виде

ppС + pВ, (3)

где pС - давление сухого воздуха, pВ - давление водяного пара.

Рассмотрим, что происходит, когда в воздухе увеличивается концентрация паров воды. Прежде чем ввести некоторые необходимые понятия и обозначения, остановимся на тех явлениях, которые происходят при испарении и конденсации любых жидкостей, в том числе - воды [1].

Испарение - это процесс, при котором часть хаотически движущихся молекул жидкости приобретает кинетическую энергию, достаточную для того, чтобы преодолеть силы притяжения со стороны других молекул и покинуть жидкость, образуя пар. Одновременно часть молекул пара может вернуться обратно в жидкость - происходит конденсация.

В замкнутом объёме, содержащем и жидкость и её пары (газ), устанавливается динамическое равновесие между испарением и конденсацией, при этом объёмы жидкости и газа остаются постоянными. Пар, находящийся в динамическом равновесии со своей жидкостью, называется насыщенным. Его давление p0 называется давлением насыщенного пара.

Реальным называется газ, в котором заметную роль играют силы межмолекулярного взаимодействия. Напомним, что в идеальном газе молекулы не взаимодействуют на расстоянии, а испытывают лишь упругие столкновения друг с другом и со стенками сосуда, в котором находится газ. Молекулы идеального газа имеют бесконечно малый объём; размерами же молекул реального газа пренебречь нельзя. На близком (сравнимом с размерами самих молекул) расстоянии друг от друга, молекулы реального газа отталкиваются, однако на больших расстояниях в газе могут оказаться существенными уже силы межмолекулярного притяжения.

Процессы испарения и конденсации в замкнутом объёме удобно пояснить, используя график изотермы реального газа в координатахp - V. На рис. 1 представлены изотермы реального газа для четырёх температур T, Т, TК и T, причём Т T TК Т.

С

При температурах меньше ТК (которая называется критической) на соответствующих кривых можно выделить три участка. В области больших V вещество находится в газообразном состоянии (участок АВ), причём, чем больше V, тем график ближе к изотерме идеального газа. При сжатии газа его поведение всё больше и больше отличается от идеального; объём газа уменьшается до тех пор, пока не начнётся конденсация. Точки В и B соответствуют значениям объёма газа VГ, и VГ, при которых начинается образование жидкой фазы.

На участке ВС имеет место динамическое равновесие между испарением и конденсацией, в сосуде находятся как пар, так и жидкость, причём пар является насыщенным. Если такой пар сжимать, то из него в жидкую фазу уходит часть молекул. Тем не менее, их концентрация n в самом паре остаётся неизменной, а значит, остаётся постоянным и давление p0:

р0 n k T, (4)

г

34

деk = 1,38 10-23 Дж К-1 - постоянная Больцмана.

Если сжатие продолжать, то наступит момент, когда объём газовой фазы уменьшится до нуля и в сосуде останется лишь одна жидкость (этому моменту соответствует точка С на изотерме; объём жидкости при этом равен VЖ ). Участок CD на графике описывает сжатие самой жидкости, а поскольку для того, чтобы даже немного сжать жидкость, надо приложить очень большое давление, то он является практически вертикальным.

Заметим, что при повышении Т отрезок ВС уменьшается до тех пор, пока не выродится в точку (точка К на рис. 1), которой соответствует критическая температура ТК. Выше этой температуры различие в физических свойствах между жидкостью и её насыщенным паром исчезает, и вещество при любых давлениях находится лишь в газообразном состоянии.

Таким образом, до тех пор, пока водяные пары в воздухе далеки от насыщения, его можно считать идеальным газом. В то же время, если воздух уже содержит достаточное количество водяного пара, то, понижая температуру, можно достичь такого состояния, что пар станет насыщенным, а при дальнейшем охлаждении начнёт конденсироваться. Избыток влаги выделяется в виде мельчайших капель, образующихся на центрах конденсации: пылинках, частицах дыма, ионах других газов и т. д. Когда капли появляются в воздухе, мы говорим о тумане; капли на поверхности земли, на листьях и траве называются росой.

Чтобы представить себе, насколько меняется содержание Н2О в воздухе при уменьшении температуры, сделаем следующую оценку. Известно, что при +30С плотность насыщенного водяного пара составляет 0,03кг/м3, а при 10С - 0,01 кг/м3. Таким образом, из каждого кубометра воздуха при охлаждении его от +30С до +10С должно выделиться в виде капель тумана или росы 20 г воды.

Для количественной оценки влажности газов на практике используется ряд характеристик, причём (в силу исторических причин) в различных областях науки и техники находят преимущественное употребление те или иные из них. Эти характеристики (они называются гигрометрическими) можно разделить на следующие группы:

Соседние файлы в папке 2005