Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
72
Добавлен:
09.06.2015
Размер:
2.98 Mб
Скачать

Определение разрешающей способности микроскопа

Цель работы. Ознакомление с устройством микроскопа и определение его разрешающей способности.

Приборы и принадлежности: Микроскоп, металлическая пластинка с маленьким отверстием, осветительное зеркало, линейка со шкалой.

Введение

Микроскоп состоит из объектива и окуляра, которые представляют собой сложные системы линз. Ход лучей в микроскопе изображён на рис.1, на котором объектив и окуляр представлены одиночными линзами.

Рассматриваемый предмет АВ размещают немного дальше от главного фокуса объектива Fоб. Объектив микроскопа даёт действительное, обратное и увеличенное изображение предмета (AB на рис. 1), которое образуется за двойным фокусным расстоянием объектива. Увеличенное изображение рассматривается окуляром как лупой. Изображение предмета, рассматриваемое в окуляр, мнимое, обратное и увеличенное.

Расстояние между задним фокусом объектива и передним фокусом окуляра называется оптическим интервалом системы или оптической длиной тубуса микроскопа.

Увеличение микроскопа можно определить по увеличению объектива и окуляра [1]:

D  

N = Nоб  Nок = ───── (1)

fоб  fок

где Nоб и Nок - увеличение объектива и окуляра соответственно; D - расстояние наилучшего зрения для нормального глаза (~25 см.) [1];  - оптическая длина тубуса микроскопа; fоб и fок - главные фокусные расстояния объектива и окуляра.

При анализе формулы (1) можно сделать заключение, что в микроскопах с большим увеличением можно рассматривать любые мелкие предметы. Однако полезное увеличение, даваемое микроскопом, ограничивается дифракционными явлениями, которые становятся заметными при рассматривании предметов, размеры которых сравнимы с длинной световой волны.

Пределом разрешающей способности микроскопа называется наименьшее расстояние между точками, изображение которых в микроскопе получается раздельно.

Согласно теории Аббе [1] предел разрешающей способности микроскопа определяет выражение:

0,61  

d = ───── (2)

n  sin

где d - линейный размер рассматриваемого предмета; - длина волны используемого света; n - показатель преломления среды между предметом и объективом;  - угол между главной оптической осью микроскопа и граничным лучом (рис. 2).

Величина A = nsin называется числовой апертурой объектива, а величина, обратная d, - разрешающей способностью микроскопа. Из выражения (2) следует что разрешающая способность микроскопа зависит от числовой апертуры объектива и длины волны света, которым освещается рассматриваемый предмет.

Если предмет находится в воздухе (n=1), то в микроскопе можно различить точки предмета, расстояние между которыми:

0,61  

d = ─────

sin

Для микроскопических предметов угол  близок к 90 градусам, тогда sin  1, откуда следует, что в микроскопе можно рассматривать предметы, находящиеся на расстоянии друг от друга ~ 0,61. В случае визуальных наблюдений (максимум чувствительности глаза приходится на зеленую область видимого спектра   550 нм) в микроскопе можно разглядеть предметы, находящиеся на расстоянии ~300 нм.

Как следует из выражения (2), разрешающую способность микроскопа можно увеличить путём уменьшения длины волны света, которым освещается предмет. Так, при фотографировании объектов в ультрафиолетовом свете (~ 250-300 нм) разрешающую способность микроскопа удаётся увеличить вдвое.