Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
132
Добавлен:
09.06.2015
Размер:
1.33 Mб
Скачать

1.3. Закон Ома

В 1827 г. немецкий физик Г. Ом, проведя серию точных экспериментов, установил один из основных законов электрического тока. Он гласит: постоян­ный электрический ток в участке электрической цепи прямо пропорциона­лен напряжению на этом участке.

Закон Ома имеет различные формы записи.

В дифференциальной форме для участка цепи без ЭДС он имеет вид

, (1.2)

где – удельная проводимость.

Рассмотрим прямолинейный проводник постоянного сечения s (рис. 1.6):

. (1.3)

Рис. 1.6

Это вторая форма записи закона Ома для участка цепи без ЭДС, которая назы­вается интегральной. Он формулируется следующим образом: ток в провод­нике равен отношению падения напряжения на участке проводника к элек­трическому сопротивлению участка.

Электрическое сопротивлениепрямо пропорционально длинеи об­ратно пропорционально площади поперечного сечения проводника:

. (1.4)

Размерность сопротивления.

Таким образом, сопротивление– это скалярная величина, характеризую­щая проводящие свойства цепи. Оно равно отношению постоянного напряжения на участке цепи к току в нем при отсутствии на участке ЭДС:

. (1.5)

Сопротивление – это величина, показывающая, что в данном участке цепи происходит преобразование энергии.

Величина, обратная сопротивлению, называется проводимостью:

. (1.6)

Размерность проводимости – сименс (См). 1 См = 1/Ом.

Удельное сопротивление:

(1.7)

Тогда

. (1.8)

Удельное сопротивление получено экспериментально для всех материалов и приведено в справочниках.

Обмотки реостатов и нагревательных приборов изготавливают из сплавов с большим удельным сопротивлением (нихром, фехраль и т.п.).

Устройства, которые включают в электрическую цепь для ограничения или регулирования тока, называются резисторами или реостатами.

Рис. 1.7

Зависимость тока резистораIот подво­димого напряженияUназывается еговольт­амперной характеристикой(ВАХ). Если сопротивление резистора не зависит от тока, то его ВАХ представляет собой прямую линию (рис. 1.7 а), проходящую через начало координат. Такой резистор называетсялинейным. Рези­стор, ВАХ которого не является прямой ли­нией (рис. 1.7 б), называетсянелинейным. Электрические цепи, содержащие только ли­нейные элементы, называют линейными. Если в цепи имеется хотя бы один нелинейный элемент, вся цепь называетсянелиней­ной.

1.4. Источник эдс и источник тока

При преобразовании любого вида энергии в электрическую энергию в источ­никах происходит за счет электродвижущей силы (ЭДС). Электродвижу­щая сила характеризует действие сторонних (неэлектрических) сил в источни­ках постоян­ного или переменного тока. В замкнутом проводящем кон­туре она равна работе этих сил по перемещению единичного положительного за­ряда вдоль этого кон­тура. Сторонние силы приводят в движение заряженные частицы внутри источ­ника электрической энергии: генераторов, гальванических элементов и т.д. ЭДС определяется как отношение работы , совершаемой сто­ронними силами при переносе заряженной частицы внутри источника, к ее за­ряду:

.

Если = 1Кл, то.

Следовательно, ЭДС равна работе, совершаемой сторонними силами при переносе единицы заряда внутри источника от зажима с меньшим потенциалом к зажиму с большим потенциалом. Ее можно представить разностью потенциалов или напряжением между положительным и отрицательным зажимами источника энергии при отсутствии в нем тока.

В замкнутой электрической цепи под действием ЭДС источника возникает ток. Цепь, в которой ток не изменяется во времени, называют цепью постоянного тока. При расчете и анализе электрических цепей источник электрической энергии представляют либо источником ЭДС, либо источником тока.

Идеальным источником ЭДС (рис. 1.8) называют такой источник энергии, ЭДС которого не зависит от протекающего через него тока и равна ЭДС реального источника, а его внутреннее сопротивление равно нулю. На рис. 1.8 показаны ус­ловные обозначения и вольтамперная характеристика идеального источника ЭДС.

За положительное направление ЭДС источника принимается направление возрастания потенциала внутри этого источника. Внутреннее сопротивление показывает, что часть энергии, вырабатываемой источником, используется внутри источника. Схема замещения реального источника (0) может быть представлена в виде последовательного соединения идеального источника ЭДС и внутреннего сопротивления (рис. 1.9). Реальный источник называют источни­ком напряжения.

Рис. 1.8

Рис. 1.9

Ток в цепи (рис. 1.9) определяется по закону Ома:

. (1.9)

Из последней формулы видно, что внутреннее сопротивление оказывает влияние на ток в электрической цепи.

Напряжение на зажимах источника или на нагрузке (рис. 1.9) определяется по формуле

Рис. 1.10

. (1.10)

ВАХ источников электрической энергии часто называют внешними характеристиками. Внешняя характеристика реального источника описывается уравнением (1.10). Ее можно по­строить по данным двух опытов (рис. 1.10):

холостого хода ;

короткого замыкания.

Источником токаназывают такой идеализированный источник электриче­ской энергии, который вырабатывает ток, не зависящий от нагрузкицепи и равный частному от деления ЭДС реального источника на его внутрен­нее сопротивление:

. (1.11)

Чтобы обеспечить постоянство тока независимо от нагрузки, необхо­димо выполнить условия: а); б).

Идеальный источник тока можно считать реальным, если внутреннее сопро­тивление подключить параллельно сопротивлению нагрузки. ВАХ и условное обозначение источника тока показаны на рис. 1.11. Схема замещения реального источника представлена на рис. 1.12.

Ток в нагрузке

. (1.12)

Рис. 1.11

Рис. 1.12

Следовательно, при расчете цепей источники тока могут быть заменены источниками ЭДС и наоборот.

Каждый из двух расчетных эквивалентов является равноценным. В дальней­шем будем использовать в основном источник ЭДС.

Эквивалентность источников обеспечивается при равенстве напряжений при холостом ходе и равенстве токов при коротком замыкании.

Соседние файлы в папке Лекции