Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методички / Эффект Холла (Кули-Заде) / эффект Холла модифицированный.doc
Скачиваний:
78
Добавлен:
09.06.2015
Размер:
410.11 Кб
Скачать

Изучение эффекта холла

Цель работы: Измерение холловской разности потенциалов в полупроводниковой пластине и определение концентрации, подвижности и знака носителей заряда, участвующих в токе.

Введение

Эффект Холла - это возникновение поперечной разности потенциалов при пропускании тока через металлическую или полупроводниковую пластинку, помещенную в магнитное поле, таким образом, чтобы вектор индукции магнитного поля () было направлено перпендикулярно вектору плотности тока ().

C помощью эффекта Холла (1879 г.) можно измерить зависимость плотности тока от концентрации свободных электронов.

Сущность эффекта Холла, на основе классической электронной теории, заключается в следующем. Если проводник, по которому течет ток, поместить в магнитное поле, то на заряды движущиеся в магнитном поле действует сила Лоренца, направленная перпендикулярно их движению. Если, например, электроны движутся в прямоугольном проводнике на рис. 1 влево, то направленное в плоскость чертежа магнитное поле будет действовать силой, направленной вверх. В результат электроны будут двигаться вверх, а положительные заряды к нижнейповерхности проводника.

Вследствие этого между поверхностями проводника А и В возникает разность потенциалов. заряда.

Рис. 1

Она будет увеличиваться до тех пор, пока не наступит равновесное состояние, при котором сила холловского электрического поля станет раной магнитной силе Лоренца:

(1)

Или

Так как магнитное поле направлено перпендикулярно к линиям тока, то напряженность поперечного электрического поля равна по абсолютной величине

(2)

Тогда разность потенциалов поперечного электрического поля между поверхностями проводника

(3)

где d-расстояние между поверхностями А и В проводника.

Средняя скорость направленного движения носителей тока связана с плотностью тока j соотношением j = nqV , где n- концентрация носителей заряда(число носителей в единице объема, q-заряд носителя). Следовательно,

(4)

Выразив плотность тока через силу тока I:

(5)

(b-толщина пластины) и подставив выражения (5) и (4) в (3), получим

(6)

(7)

Коэффициент называют постоянной Холла.

Формула (7) получена без учёта закона распределения электронов по скоростям. Более точный расчет с учетом закона распределения носителей по скоростям в рамках классической статистики приводит к выражению для постоянной Холла

(8)

В полупроводниках с атомной решеткой, например для кремния,

поэтому

Для полупроводников с ионной связью, например для интерметаллического соединения арсенида галлия А = 1. В этом случае применима формула (7).

Соотношение (6) позволяет определить постоянную Холла и концентрацию носителей заряда n, в образце из опытных данных:

(9)

Если известно, то, измеряя и I, можно найти . Этот способ измеренияиспользуется в технике (датчики Холла).

Важной характеристикой полупроводника является подвижность в нем носителей заряда, под которой подразумевается средняя скорость, приобретаемая носителем в поле, напряженность которого равна единице. Если в поле напряженностью носители приобретают скорость, то подвижность ихu, равна:

(10)

Используя связь между плотностью тока, напряженностью электрического поля и проводимостью и учитывая (4) и(10), можно выразить подвижность через проводимость σ и концентрацию носителей заряда:

(11)

Из соотношений (7) и (11) следует:

(12)

Таким образом, для определения подвижности носителей, необходимо измерить и σ.

Из (7) следует, что знак постоянной Холла совпадает со знаком носителей заряда. У полупроводников постоянная Холла может быть отрицательной и положительной, так как существует два типа проводимости. У полупроводников с электронной проводимостью( полупроводников n-типа) знак постоянной Холла отрицателен. Если электропроводимость полупроводников осуществляется положительными зарядами или так называемыми «дырками», то знак постоянной Холла положителен. Такие полупроводники называются дырочными (полупроводниками р-типа). Если в полупроводнике одновременно осуществляется оба типа проводимости, то по знаку постоянной Холла можно судить о том, какой из них является преобладающими.

Зависимость знака постоянной Холла от знака носителей заряда, создающих в данном веществе можно понять из рис.2, на котором демонстрируется эффект Холла для образцов с положительными и отрицательными носителями.

Рис.2

Направление силы Лоренца изменяется на противоположное как при изменении направления движения зарядов, так и при изменении знака.

Рис. 2

Следовательно, при одинаковом направлении тока и магнитной индукции ()сила Лоренца, действующая на положительные и отрицательные носители, имеет одинаковое направление.

Метод измерения и описание аппаратуры

Изучение эффекта Холла в полупроводниках проводится на учебном приборе, общий вид и электрическая схема кото­рого представлены соответственно на рис. 3 и 4 Исследуемый образец О (см. рис. 3), представляющий со­бой тонкий пластинку кремния , вмонтирован в прозрачный диэлектрический держатель D, который можно поворачи- вать на 180° с помощью рукоятки Р1 в поле постоянного маг­нита Цилиндрический экран Э, изготовленный из ферромагне­тика, который можно перемещать с помощью рукоятки Р2, по­зволяет производить магнитную экранировку образца. Блок питания Б, (см. рис. 4) и включается тумблером Т, служит для со­здания продольного тока через образец. Величина тока регу­лируется потенциомет-

ром Пи измеряется миллиамперметром, а его направление изменяется, с помощью переключателя П.

Рис. 3

Рис. 4

Микроамперметр А с симметричной относительно нуля шкалой, включаемый последовательно с сопротивлением Rили Rс помощью переключателя Пслужит для определения тока, вызванного ЭДС Холла. Все приборы и приспособления за­креплены на панели, в которую вмонтированы также клеммы 1~12, с помощью которых осуществляется сборка цепи питания исследуемого образца и цепи измерения ЭДС Холла. В панели имеется окно для наблюдения за взаимным расположением магнитного экрана, исследуемого образца и постоянного „магнита, южный и северный полюса которого обозначены буквами S и N. Значения магнитной индукции поля постоянного магнита, удельной проводимости и толщины исследуемого образца, величины сопротивлений Rи R. размещены на лабораторном стенде.

Электрическая схема измерительной установки размещена на панели установки.

В данной работе исследуется ЭДС Холла (поперечная раз­ность потенциалов) и зависимости от величины протекающе­го по образцу продольного тока I при постоянном значении внешнего магнитного поля. Измерение ЭДС Холла проводится при различных углах между векторами В и j т.е. между направлениями магнитного поля и направлением тока через образец.

Для определения ЭДС Холла ис­пользуют метод, основанный на измерении с помощью микроамперметра μA, нагружаемого на два различных сопротивле­ния R1 и R2 двух токов i1 и i2 в холловской цепи. Расчет ЭДС Холла производится по формуле

(15)

Формула получается из решения уравнения Кирхгофа для холловской цепи

, (14)

где R —нагрузочное сопротивление (Rили R);

R- контактное сопротивление;

R- сопротивление образца между холловскими элек­тродами;

R- сопротивление микроамперметра.

Подставляя вместо R значения R1 и R2, получим систему двух уравнении:

;

. (15)

Если выбирать значения токов i1 и i2 достаточно близкими друг к другу, то контактное сопротивление RK можно счи­тать постоянным при измерениях. Решая систему уравнений (15), получим расчетную формулу (13).

Для исключения паразитных ЭДС, возникающих из-за на­личия асимметрии холловcких контактов и температурного градиента и образце, окончательное значение ЭДС Холла рассчитывается как среднее арифметическое из четырех из­мерений: двух при разном направлении продольного тока и двух при разном направлении магнитного поля.