
- •Области, основные разделы и направления электроники
- •Элементы электронных схем
- •3. Биполярные транзисторы
- •Транзисторные ключи
- •4. Полевые транзисторы
- •5. Тиристоры
- •6. Оптоэлектронные приборы
- •Фоторезистор
- •Оптрон (оптопара)
- •7. Операционные усилители
- •8. Интегральные микросхемы
- •9. Аналоговые электронные устройства Усилители
- •Обратная связь в усилителях
- •Усилители на биполярных транзисторах
- •Усилители на полевых транзисторах
- •10. Линейные схемы на основе операционных усилителей
- •Инвертирующий усилитель на основе оу
- •Неинвертирующий усилитель на основе оу
- •Повторитель напряжения на основе оу
- •11. Усилители постоянного тока
- •Дифференциальный усилитель на биполярных транзисторах
- •Усилитель постоянного тока с модуляцией и демодуляцией (усилитель типа мдм)
- •Услители мощности (мощные выходные усилители)
- •Трансформаторные усилители мощности
- •Бестрансформаторные усилители мощности
- •Области, основные разделы и направления электроники
- •Элементы электронных схем
- •3. Биполярные транзисторы
- •Транзисторные ключи
- •4. Полевые транзисторы
- •5. Тиристоры
- •6. Оптоэлектронные приборы
- •Фоторезистор
- •Оптрон (оптопара)
- •7. Операционные усилители
- •8. Интегральные микросхемы
- •9. Аналоговые электронные устройства Усилители
- •Обратная связь в усилителях
- •Усилители на биполярных транзисторах
- •Усилители на полевых транзисторах
- •10. Линейные схемы на основе операционных усилителей
- •Инвертирующий усилитель на основе оу
- •Неинвертирующий усилитель на основе оу
- •Повторитель напряжения на основе оу
- •11. Усилители постоянного тока
- •Дифференциальный усилитель на биполярных транзисторах
- •Усилитель постоянного тока с модуляцией и демодуляцией (усилитель типа мдм)
- •Услители мощности (мощные выходные усилители)
- •Трансформаторные усилители мощности
- •Бестрансформаторные усилители мощности
Фоторезистор
Фоторезистором называют полупроводниковый резистор, сопротивление которого чувствительно к электромагнитному излучению в оптическом диапазоне спектра. Схематическое изображение структуры фоторезистора приведено на рис. 6.5,а, а его условное графическое изображение – на рис. 6.5,б.
Поток фотонов, падающих на полупроводник, вызывает появление пар электрон-дырка, увеличивающих проводимость (уменьшающих сопротивление). Это явление называют внутренним фотоэффектом (эффектом фотопроводимости). Фоторезисторы часто характеризуются зависимостью тока i от освещенности Е при заданном напряжении на резисторе. Это так называемая люкс-амперная характеристика (рис. 6.6).
Рис. 6.5. Структура (а) и схематическое обозначение (б) фоторезистора
Рис. 6.6. Люкс-амперная характеристика фоторезистора ФСК-Г7
Часто используют следующие параметры фоторезисторов:
номинальное темновое (при отсутствии светового потока) сопротивление (для ФСК-Г7 это сопротивление равно 5 МОм);
интегральную чувствительность (чувствительность, определяемая при освещении фоторезистора светом сложного спектрального состава).
Интегральная чувствительность (токовая чувствительность к световому потоку) S определяется выражением:
,
где iф – так называемый фототок (разность между током при освещении и током при отсутствии освещения);
Ф – световой поток.
Для фоторезистора ФСК-Г7 S=0,7 А/лм.
Фотодиод
Устройство и основные физические процессы. Упрощенная структура фотодиода приведена на рис. 6.7,а, а его условное графическое изображение – на рис. 6.7,б.
Рис. 6.7. Структура (а) и обозначение (б) фотодиода
Физические процессы, протекающие в фотодиодах, носят обратный характер по отношению к процессам, протекающим в светодиодах. Основным физическим явлением в фотодиоде является генерация пар электрон-дырка в области p-n-перехода и в прилегающих к нему областях под действием излучения.
Генерация пар электрон-дырка приводит к увеличению обратного тока диода при наличии обратного напряжения и к появлению напряжения uак между анодом и катодом при разомкнутой цепи. Причем uак>0 (дырки переходят к аноду, а электроны – к катоду под действием электрического поля p-n-перехода).
Характеритики и параметры. Фотодиоды удобно характеризовать семейством вольт-амперных характеристик, соответствующих различным световым потокам (световой поток измеряется в люменах, лм) или различным освещенностям (освещенность измеряется в люксах, лк).
Вольт-амперные характеристики (ВАХ) фотодиода представлена на рис. 6.8.
Рис. 6.8. Вольт-амперные характеристики фотодиода
Пусть вначале световой поток равен нулю, тогда ВАХ фотодиода фактически повторяет ВАХ обычного диода. Если световой поток не равен нулю, то фотоны, проникая в область p-n–перехода, вызывают генерацию пар электрон-дырка. Под действием электрического поля p-n–перехода носители тока движутся к электродам (дырки – к электроду слоя p, электроны – к электроду слоя n). В результате между электродами возникает напряжение, которое возрастает при увеличении светового потока. При положительном напряжении анод-катод ток диода может быть отрицательным (четвертый квадрант характеристики). При этом прибор не потребляет, а вырабатывает энергию.
На практике фотодиоды используют и в так называемом режиме фотогенератора (фотогальванический режим, вентильный режим), и в так называемом режиме фотопреобразователя (фотодиодный режим).
В режиме фотогенератора работают солнечные элементы, преобразующие свет в электроэнергию. В настоящее время коэффициент полезного действия солнечных элементов достигает 20 %. Пока энергия, полученная от солнечных элементов, примерно в 50 раз дороже энергии, получаемой из угля, нефти или урана.
Режим фотопреобразователя соответствует ВАХ в третьем квадранте. В этом режиме фотодиод потребляет энергию (u · i > 0) от некоторого обязательно имеющегося в цепи внешнего источника напряжения (рис. 6.9). Графический анализ этого режима выполняется при использовании линии нагрузки, как и для обычного диода. При этом характеристики обычно условно изображаются в первом квадранте (рис. 6.10).
Рис. 6.9 Рис. 6.10
Фотодиоды являются более быстродействующими приборами по сравнению с фоторезисторами. Они работают на частотах 107–1010 Гц. Фотодиод часто используют в оптопарах светодиод-фотодиод. В этом случае различные характеристики фотодиода соответствуют различным токам светодиода (который при этом создает различные световые потоки).