
- •Области, основные разделы и направления электроники
- •Элементы электронных схем
- •3. Биполярные транзисторы
- •Транзисторные ключи
- •4. Полевые транзисторы
- •5. Тиристоры
- •6. Оптоэлектронные приборы
- •Фоторезистор
- •Оптрон (оптопара)
- •7. Операционные усилители
- •8. Интегральные микросхемы
- •9. Аналоговые электронные устройства Усилители
- •Обратная связь в усилителях
- •Усилители на биполярных транзисторах
- •Усилители на полевых транзисторах
- •10. Линейные схемы на основе операционных усилителей
- •Инвертирующий усилитель на основе оу
- •Неинвертирующий усилитель на основе оу
- •Повторитель напряжения на основе оу
- •11. Усилители постоянного тока
- •Дифференциальный усилитель на биполярных транзисторах
- •Усилитель постоянного тока с модуляцией и демодуляцией (усилитель типа мдм)
- •Услители мощности (мощные выходные усилители)
- •Трансформаторные усилители мощности
- •Бестрансформаторные усилители мощности
- •Области, основные разделы и направления электроники
- •Элементы электронных схем
- •3. Биполярные транзисторы
- •Транзисторные ключи
- •4. Полевые транзисторы
- •5. Тиристоры
- •6. Оптоэлектронные приборы
- •Фоторезистор
- •Оптрон (оптопара)
- •7. Операционные усилители
- •8. Интегральные микросхемы
- •9. Аналоговые электронные устройства Усилители
- •Обратная связь в усилителях
- •Усилители на биполярных транзисторах
- •Усилители на полевых транзисторах
- •10. Линейные схемы на основе операционных усилителей
- •Инвертирующий усилитель на основе оу
- •Неинвертирующий усилитель на основе оу
- •Повторитель напряжения на основе оу
- •11. Усилители постоянного тока
- •Дифференциальный усилитель на биполярных транзисторах
- •Усилитель постоянного тока с модуляцией и демодуляцией (усилитель типа мдм)
- •Услители мощности (мощные выходные усилители)
- •Трансформаторные усилители мощности
- •Бестрансформаторные усилители мощности
5. Тиристоры
Тиристорами называют полупроводниковые приборы с двумя устойчивыми режимами работы (включен, выключен), имеющие три или более p-n–переходов.
Тиристор по принципу действия – прибор ключевого типа. Во включенном состоянии он подобен замкнутому ключу, а в выключенном – разомкнутому ключу. Те тиристоры, которые не имеют специальных электродов для подачи сигналов с целью изменения состояния, а имеют только два силовых электрода (анод и катод), называют неуправляемыми, или диодными, тиристорами (динисторами). Приборы с управляющими электродами называют управляемыми тиристорами, или просто тиристорами.
Тиристоры являются основными элементами в силовых устройствах электроники, которые называют также устройствами преобразовательной техники (управляемые выпрямители, инверторы и т. п.).
Существует большое количество различных тиристоров. Наиболее часто используют незапираемые тиристоры с тремя выводами, управляемые по катоду. Такие тиристоры содержат два силовых и один управляющий электрод и проводят ток только в одном направлении.
Упрощенное изображение структуры тиристора представлено на рис. 5.1, а его условное графическое обозначение – на рис. 5.2.
Обратимся к простейшей схеме с тиристором (рис. 5.3), где использованы следующие обозначения:
ia – ток анода (силовой ток в цепи анод-катод тиристора);
uak – напряжение между анодом и катодом;
iy – ток управляющего электрода (в реальных схемах используют импульсы тока);
uyk – напряжение между управляющим электродом и катодом;
uпит – напряжение питания.
Рис. 5.1. Структурная схема тиристора
Рис. 5.2. Графическое изображение тиристора
Рис. 5.3. Схема управления с применением тиристора
Предположим,
что напряжение питания меньше так
называемого напряжения переключения
Uпер
(uпит<Uпер)
и что после подключения источника
питания импульс управления на тиристор
не подавался. Тогда тиристор будет
находиться в закрытом (выключенном)
состоянии. При этом ток тиристора будет
малым (ia=0)
и будут выполняться соотношения
,
(нагрузка отключена от источника
питания).
Если
предположить, что выполняется соотношение
uпит>Uпер
или что после подключения источника
питания (даже при выполнении условия
uпит<Uпер)
был подан импульс управления достаточной
величины, то тиристор будет находиться
в открытом (включенном) состоянии. При
этом для всех трёх переходов будут
выполняться соотношения
,
,
(т. е. нагрузка оказалась подключенной
к источнику питания).
Существуют тиристоры, для которых напряжение Uпер больше 1 кВ, а максимально допустимый ток ia больше, чем 1 кА.
Характерной особенностью рассматриваемого незапираемого тиристора, который очень широко используется на практике, является то, что его нельзя выключить с помощью тока управления.
Для выключения тиристора на практике не него подают обратное напряжение uак<0 и поддерживают это напряжение в течение времени, большего так называемого времени выключения tвыкл. Оно обычно составляет единицы или десятки микросекунд. За это время избыточные заряды в слоях n1 и p2 исчезают. Для выключения тиристора напряжение источника питания uпит в приведенной выше схеме (см. рис. 5.3) должно изменить полярность.
После указанной выдержки времени на тиристор вновь можно подавать прямое напряжение (uак>0), и он будет выключенным до подачи импульса управления.
Существуют и широко используются так называемые симметричные тиристоры (симисторы, триаки). Каждый симистор подобен паре рассмотренных тиристоров, включенных встречно-параллельно (рис. 5.4). Условное графическое обозначение симистора показано на рис. 5.5.
Рис. 5.4 Рис. 5.5