
- •Раздел I. Образ науки
- •2. Цель науки
- •3. Что производит наука? - Научные знания
- •4. Наука как процесс познания
- •5. Знание о чем?
- •6. Наука как социальный институт
- •7. Перспективы развития науки
- •Раздел II. Возникновение науки
- •1. Дата и место рождения науки
- •2. Миф, технология, наука
- •3. Проблема «европоцентризма»
- •4. На гребне «социальной волны»
- •5. Из плена времени
- •III. «большая наука»
- •1. Особенности современной науки
- •2. Наука и общество
- •IV. Общество и научно-технический прогресс
- •1. Технологические революции в истории человечества
- •2. Три типа общества
- •3. Коренные изменения в «первой природе»
- •4. Радикальные преобразования во «второй природе»
- •5. Влияние развития техники и технологий на жизнь людей
- •V. Влияние науки на религиозное восприятие мира
- •1. Отношение к религии в век нтп. Социальный статус науки
- •2. Потребность в диалоге
- •3. Трудности во взаимоотношениях
- •4. Развитие представлений о мире и изменение «моделей» бога
- •5. Современные теологические концепции развития мира и роли бога в нем
- •VI. Наука и философия
- •1. Позиция механистов
- •2. Взгляды позитивистов
- •3. «К0перниканский поворот» в философии
- •4. Философия как аналитическая деятельность
- •5. Противостояние позитивизму
- •VII. Структура научного знания
- •1. Эмпирический и теоретический уровни знания
- •2. Философские основания науки
- •3. Взаимосвязь различных уровней знания
- •4. Структура научной дисциплины
- •5. Характер научного знания и его функции
- •VIII. Функции научного исследования
- •1. «Знать, чтобы предвидеть»
- •2. Э. Мах о статусе описания в науке
- •3. Основная модель научного объяснения
- •4. Является ли процесс объяснения дедуктивным?
- •5. Какой вид объяснения главнее?
- •6. Почему колокола звонят на пасху?
- •7. Объяснение без понимания. Понимание без объяснения
- •8. И все-таки понимание!
- •9. «Основная модель научного предвидения»
- •10. Структура процесса предвидения
- •11. Характер прогноза
- •12. Основания предвидения.
- •Раздел IX. Особенности процесса научного познания
- •1. В поисках логики открытия
- •2. Критические аргументы
- •3. От логики открытия к логике подтверждения
- •4. Фальсифицируемость как критерий научности
- •5. Концепция «третьего мира» к.Поппера
- •6. Научные революции, парадигмы и научные сообщества
- •7. Методология исследовательских программ
- •X. Традиции и новации в развитии науки
- •1. Традиционность науки и виды научных традиций
- •2. Традиции и новации
- •3. Новации и взаимодействие традиций
- •XI. Научные революции
- •1. Новые теоретические концепции
- •2. Новые методы исследования
- •3. Открытие новых миров
- •4. Революции и традиции
- •XII. Природа фундаментальных научных открытий
- •1. Два рода открытий
- •2. Историческая обусловленность фундаментальных открытий
- •3. Гелиоцентрическая система коперника
- •4. Геометрия лобачевского
- •5. Открытие менделя
- •XIII. Редукционизм: возможности и границы
- •1. Стремление к синтезу
- •2. Успехи редукционизма
- •3. Как обосновывается редукционизм?
- •4. Аргументы против редукционизма
- •5. Контуры современной картины мира
- •6. Единство науки и ее многообразие
- •XIV. Идеалы научности
- •1. Что такое идеал научности?
- •2. Основания классических представлений о науке
- •3. Формы классического идеала
- •4. Основные направления критики
- •5. В поисках альтернатив
3. Основная модель научного объяснения
Сведение науки к сугубо эмпирическому знанию (радикальный эмпиризм), а ее функций к описанию (дескриптивизм) имело вполне определенные причины, и в том числе объективные.
Триумф механики в ХУ11-Х1Х вв. привел к тому, что механическое объяснение стали рассматривать как единственный истинно научный способ объяснения.
Когда физик, говорит Ф. Эддингтон, стремился объяснить что-либо, «его ухо изо всех сил пыталось уловить шум машины. Человек, который сумел бы сконструировать гравитацию из зубчатых колес, был бы героем викторианского века».
Но в XIX в., особенно во второй его половине, получает широкий размах исследование самых разнообразных немеханических явлений. Многочисленные попытки объяснить и вообще теоретически осознать их старым способом потерпели поражение. Это и вызвало у некоторых ученых разочарование в объяснительном исследовании как таковом.
Но наступил XX век, и вскоре ситуация начала меняться коренным образом. Даже физики отказались от программы сведения всех физических явлений к механическим. В начале века создается теория относительности, а затем квантовая механика, которые определяют новые пути развития физического познания. Больших успехов на пути разработки собственных понятийных средств и методов исследования удается достичь химии, биологии, лингвистике, психологии и другим наукам.
Развитие науки в первой трети нашего века непосредственно ставило вопросы о соотношении научного факта и закона, эмпирии и теории, о сущности объяснения и предвидения, об их структуре, роли и месте в исследовательском процессе. И эти вопросы не остались без ответа.
Спустя столетие возрождается к жизни концепция объяснения и предвидения, сформулированная О. Коптом и его сподвижником
Дж. С. Миллем. В книге «Логика исследования» (1935) К. Поппер изложил модель (схему) объяснения и предвидения. Дальнейшая разработка этой модели осуществлялась К. Гемпелем в статье «Функция общих законов в истории» (1942) и особенно в статье «Исследования по логике объяснения» (1948) (написанной в соавторстве с П. Оппенгеймом), а также в ряде его последующих работ.
«Дать причинное объяснение события, – писал К.Поппер, – значит дедуцировать положение, описывающее его, используя в качестве посылок дедукции один или более универсальных законов совместно с определенными единичными положениями – начальными условиями».
Пусть необходимо объяснить событие (е) – разрыв некоторой нити. Оно описывается посредством единичного фактуального положения (Е) – «Данная нить разорвалась». Допустим, нам известно другое событие (с) – к нити был подвешен груз весом два фунта, тогда как предел ее прочности равен одному фунту. Последнее событие может быть описано посредством фактуального положения (С) – «Данная нить была нагружена весом, превышающим предел ее прочности». Теперь мы отыскиваем такой причинно-следственный закон (3), который фиксирует, что события типа (с) всегда (с необходимостью) вызывают к жизни события типа (е): «Всегда, если нить нагружена весом, превышающим предел ее прочности, то нить разрывается» или в общем виде: «Всегда, если С, то Е».
Завершенное объяснение имеет вид дедуктивного вывода:
Всегда, если нить нагружена весом, превышающим предел ее прочности, то нить разрывается (3)
Данная нить была нагружена весом, превышающим
предел ее прочности_________________________________(С)
Данная нить разорвалась (Е)
или в более общем, хотя и несколько упрощенном виде:
Всегда, если С, то Е
Таким образом, событие (Е) объясняется путем апелляции к другому событию —(С) и к причинно-следственному закону, согласно которому события типа (С) всегда (с необходимостью) вызывают к жизни (являются причиной) события типа (Е).
Гемпель и Оппенгейм обозначили
положение, которое описывает объясняемый объект (здесь положение Е), термином «экспланандум» (букв. «объясняемый»),
а совокупность объясняющих положений (здесь: положения С и 3) – термином «эксплананс» (букв. «объясняющие»).
Как нетрудно заметить, эксплананс в описанной модели совпадает с посылками дедуктивного вывода, а экспланаидум – с его заключением. К. Поппер рассмотрел предельно простой случай: в эксплананс включено всего одно положение о начальных условиях и одно положение о законе, а дедуктивный вывод имеет одноступенчатый вид.
К. Гемпель и П .Оппенгейм показали, что чаще всего в эксплананс входит целый ряд тех и других положений, а процесс вывода приобретает сложный, подчас многоступенчатый характер.