
- •1. Гостр 54149-2010
- •1.1 Основные определения.
- •1.2. Показателями кэ являются:
- •2. Классификация и характеристика показателей качества ээ.
- •2.1. Классификация.
- •2.2. Отклонения частоты.
- •2.3. Отклонения напряжения.
- •2.4. Влияние отклонений напряжения на на работу эп и эл. Сети.
- •2.8. Колебания напряжения.
- •2.5.Провалы и кратковременные исчезновения напряжения.
- •2.6.Временное перенапряжение.
- •2.7.Импульсное напряжение.
- •2.8.Несимметрия токов и напряжений.
- •2.8.3. Определение модулей напряжений симметричных составляющих по результатам измерения модулей линейных и фазных напряжений сети.
- •3. Несинусоидальность токов и напряжений.
- •3.1. Причина искажения кривой тока - эп с нелинейной вах.
- •3.2. Причина искажения кривой напряжения – потеря напряжения в сети.
- •3.3. Направление мощности, переносимой высшими гармониками у эп – источника гармоник.
- •3.4. Разложение периодических функций в ряд, метод наложения.
- •3.5. Особенности поведения высших гармоник (вг) в трехфазных сетях.
- •3.6. Особенность четных гармоник.
- •3.7. Токи, потребляемые из сети электроприемниками с нелинейной вах.
- •3.7.1. Вентильные преобразователи.
- •3.7.2. Телевизоры и персональные компьютеры.
- •3.7.3. Регуляторы мощности на встречно – параллельных тиристорах.
- •3.7.4. Электродуговые печи, электросварка.
- •3.7.5. Газоразрядные лампы.
- •3.8.1. Электродвигатели.
- •3.8.2. Дополнительные потери активной мощности в обмотках трансформатора:
- •3.8.3. Изоляция электроустановок.
- •3.8.4. Конденсаторные батареи.
- •3.8.5. Учет электроэнергии.
- •3.8.6. Системы автоматики и связи.
- •3.9. Расчет напряжения вг.
- •3.9.1.Сопротивление работающего асинхронного двигателя (ад) на вг.
- •3.9.2. Синхронные двигатели (сд).
- •3.9.3. Силовые трансформаторы и реакторы.
- •3.9.4. Расчет напряжения вг в сети с вентильными преобразователями.
- •3.10. Защита кб от резонанса токов на вг, фильтрокомпенсирующие устройства (фку).
- •Список литературы
3.5. Особенности поведения высших гармоник (вг) в трехфазных сетях.
В трехфазной сети ВГ образуют системы прямой, обратной и нулевой последовательностей.
Гармоники,
для которых k-1
делится на 3 образуют системы прямой
последовательности. Например, угол
сдвига 4-й гармоники (4-1=3, 3/3=1) фазы В по
отношению к фазе А:
.
Гармоники,
для которых k+1
делится на 3 образуют системы обратной
последовательности. Например, угол
сдвига 2-й гармоники (2+1=3, 3/3=1) фазы В по
отношению к фазе А:
(240°).
Гармоники,
для которых k
делится на 3 образуют системы нулевой
последовательности. Например, угол
сдвига 3-й гармоники (3/3=1) фазы В по
отношению к фазе А:
- эквивалентно нулю.
На рис. 3.6 приведены кривые токов 1-й и 3-й гармоник в трехфазной цепи, где видно, что угол сдвига между токами 3-й гармоники фаз А, В и С равен нулю, т.е. эти токи совпадают по фазе и образуют систему нулевой последовательности.
Рис.3.6. Первая и третья гармоники в трехфазной цепи.
Токи гармоник, кратным трем, могут протекать только в четырехпроводной трехфазной цепи, при этом в нейтральном проводе протекает сумма токов трех фаз.
Если обмотка генератора или трансформатора соединена в треугольник, по ней будет протекать токи гармоник, кратных трем, даже при отсутствии внешней нагрузки, т.к. сумма их ЭДС составляет 3Е3, где Е3 – ЭДС одной фазы (рис.3.7.а).
Действующее значение тока, протекающего в контуре треугольника:
.
При этом напряжения этих гармоник равны нулю, т.к. замкнутый треугольник представляет для них короткозамкнутый контур. Токи гармоник не кратных трем в контуре треугольника не протекают, т.к. для них сумма ЭДС трех фаз равна нулю.
Если обмотки генератора (трансформатора) соединены в открытый треугольник (рис.3.7.б), то несмотря на присутствие ЭДС гармоник, кратных трем, ток этих гармоник протекать не может, т.к. контур разомкнут. При этом вольтметр, подключенный к зажимам m, n покажет действующее значение ЭДС этих гармоник:
.
Рис.3.7. Токи и напряжения гармоник, кратных трем в треугольнике.
В линейном напряжении, независимо от схемы соединения (звезда или треугольник) генератора (трансформатора) гармоники, кратные трем, отсутствуют.
3.6. Особенность четных гармоник.
Искажения формы кривых напряжения и тока, встречающиеся на практике, обычно симметричны относительно оси времени, т.е. отвечают условию
f(t) = f(t + T/2), т.е отрицательная полуволна является зеркальным отражением положительной полуволны, сдвинутой на Т/2 (на полпериода) (рис.3.8а). В этом случае ряд Фурье не содержит постоянной составляющей и четных гармоник.
Это положение можно доказать методом от противного: допустим, кривая тока i, состоящая из первой i1 и второй (четной) i2 гармоник (рис.3.8б) несимметрична относительно оси времени, f(t) ≠ f(t + T/2).
Вывод: в разложении кривых, симметричных относительно оси времени, отсутствуют четные гармоники.
Таким образом, в трехфазных трехпроводных сетях обычно отсутствуют кратные трем и четные гармоники, т.е. обычно присутствуют гармоники с номерами
5, 7, 11, 13, 17…
Рис.3.8. а) Симметричная относительно оси времени кривая; б) Несимметричная кривая, содержащая вторую гармонику.