
- •«Самарский государственный технический университет»
- •Лекция №1
- •Тема 1.1. Основные типы электростанций.
- •Основные типы электростанций. Краткая характеристика режимов работы
- •Режимы работы электрических станций в энергосистеме.
- •Резервы мощности в энергосистеме
- •Лекция №2
- •Тема 1.2. Принципы построения схем электрических соединений электрических станций и подстанций. Основное электрооборудование станций и подстанций
- •Схемы соединений электрических станций и подстанций
- •Основные требования к главным схемам станций и подстанций.
- •Классификация подстанций
- •Лекция №3
- •Тема 1.2. Принципы построения схем электрических соединений электрических станций и подстанций (продолжение). Схемы со сборными шинами.
- •Схемы без сборных шин
- •Лекция №4
- •Тема 2.1. Расчет симметричных токов короткого замыкания
- •Механизм возникновения и протекания тока к.З. В системе неограниченно большой мощности.
- •Лекция №5
- •Тема 2.2. Расчет несимметричных ткз.
- •Лекция № 6
- •Тема 2.3. Методы ограничения токов короткого замыкания.
- •Лекция № 7
- •Тема 2.3. Методы ограничения токов короткого замыкания (продолжение).
- •Лекция №8
- •Тема 3.1. Краткая характеристика аппаратов ру и подстанций и методика их выбора
- •Лекция № 9
- •Тема 3.2. Трансформаторы и автотрансформаторы.
- •Измерительные трансформаторы напряжения
- •Лекция №10
- •Тема 3.3. Собственные нужды электростанций и подстанций.
- •Лекция №11.
- •Тема 3.4. Системы управления и измерения. Источники оперативного тока на электростанциях и подстанциях.
- •Лекция №12
- •Тема 4.1. Конструктивное устройство ру и подстанций.
- •Лекция №13
- •Тема 4.2. Вопросы эксплуатации. Оперативные переключения в распределительных устройствах.
- •Лекция №14
- •Тема 5.1. Распределение нагрузок между генераторами электростанций.
- •Лекция №15
- •Тема 5.2. Вопросы устойчивости работы энергосистем.
- •Лекция №16
- •Тема 6.1. Режимы работы нейтрали в сетях напряжением 110 кВ и выше.
- •Лекция №17
- •Тема 6.2. Электрические сети напряжением 110 кВ и выше. Схемы замещения лэп и трансформаторов.
- •Лекция №18
- •Тема 6.3. Методика расчета питающих (разомкнутых) сетей.
- •Лекция №19
- •Тема 6.4. Методика электрического расчета замкнутых цепей.
- •Перенос нагрузок в другие узлы сети
- •Расчет сложнозамкнутых сетей
- •Матричный способ расчета
- •Лекция №20
- •Тема 6.5. Потери мощности и электроэнергии в электрических сетях, пути их снижения.
- •Лекция №21
- •Тема 7.1. Заземляющие устройства в электрических сетях. Методика их расчета.
- •Лекция №22
- •Тема 7.2. Молниезащита.
- •Лекция №23
- •Тема 7.3. Защита от перенапряжений.
- •Основные положения по выбору параметров опн
- •Лекция №24 Заключение.
Основные положения по выбору параметров опн
основные параметры ограничителя:
наибольшее длительно допустимое рабочее напряжение;
номинальное напряжение, номинальный разрядный ток, класс пропускной способности;
уровни остающихся напряжений при коммутационных и грозовых импульсах;
величина тока срабатывания противовзрывного устройства;
длина пути утечки внешней изоляции.
Основные параметры ограничителя выбирают исходя из назначения, требуемого уровня ограничения перенапряжений, места установки, а также схемы сети и ее параметров(наибольшего рабочего напряжения сети, способа заземления нейтрали, величины емкостного тока замыкания на землю и степени его компенсации, длительности существования однофазного или трехфазного замыкания на землю и т.д.)
Методика выбора основных параметров
Выбор наибольшего длительно допустимого рабочего напряжения ОПН.
В сетях 3-35 кВ, работающих с изолированной нейтралью или компенсацией емкостного тока замыкания на землю и допускающих неограниченно длительное существование однофазного замыкания на землю, наибольшее рабочее длительно допустимое напряжение ограничителя выбирается равным наибольшему рабочему напряжению электрооборудования Uр=Uн.
В сетях 110-500 кВ, работающих с эффективно заземленной нейтралью (коэффициент замыкания на землю не выше 1,4), наибольшее длительно допустимое рабочее напряжение ограничителя должно быть не ниже:
где: UНС— наибольшее длительно допустимое рабочее напряжение в электрической сети.
Выбор номинального разрядного тока.
2500 А — низковольтные ОПН на классы напряжения 0,38 и 0,66 кВ.
5000 А — ограничители для защиты распределительных сетей 3, 6 и 10 кВ от грозовых перенапряжений.
10000 А — ограничители для защиты электрооборудования от коммутационных и грозовых перенапряжений на классы напряжения от 3 до 330 кВ.
20000 А — ограничители для защиты электрооборудования от коммутационных и грозовых перенапряжений на классы напряжения от 220 до 500 кВ.
Лекция №24 Заключение.
СТРАТЕГИЧЕСКИЕ ЦЕЛИ РАЗВИТИЯ ЭЛЕКТРОЭНЕРГЕТИКИ РОССИИ НА ПЕРИОД ДО 2030 г.
Эти цели включают:
• обеспечение энергетической безопасности страны и регионов;
• удовлетворение потребностей экономики и населения страны в электрической энергии (мощности); • обеспечение надежности работы системы электроснабжения России;
• инновационное обновление отрасли, направленное на обеспечение высокой энергетической, экономической и экологической эффективности производства, транспорта, распределения и использования электроэнергии.
Для достижения стратегических целей развития электроэнергетики необходимо решение следующих основных задач:
• обеспечение широкого внедрения новых высокоэффективных технологий производства, транспорта и распределения электроэнергии и, тем самым, построение электроэнергетики на качественно новом технологическом уровне;
• создание эффективной системы управления функционированием и развитием ЕЭС и электроэнергетики страны в целом, обеспечивающей минимизацию затрат;
• обеспечение эффективной политики государства в электроэнергетике;
• диверсификация ресурсной базы электроэнергетики путем расширения ниши для увеличения доли угля в производстве электроэнергии на ТЭС, расширения использования АЭС, ГЭС и нетрадиционных возобновляемых источников энергии;
• сбалансированное развитие генерирующих мощностей и электрических сетей, обеспечивающих требуемый уровень надежности электроснабжения потребителей;
• дальнейшее развитие ЕЭС России;
• развитие малой энергетики в зоне децентрализованного энергоснабжения за счет повышения эффективности использования местных энергоресурсов, развития электросетевого хозяйства, сокращения объемов потребления завозимых светлых нефтепродуктов;
• разработка и реализация механизма сдерживания цен за счет технологического инновационного развития отрасли, снижения затрат на строительство генерирующих и сетевых мощностей, создания эффективной системы управления;
• снижение негативного воздействия электроэнергетики на окружающую среду на основе применения наилучших существующих и перспективных технологий.
ОБЕСПЕЧЕНИЕ НАДЕЖНОСТИ СИСТЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ РОССИИ
Анализ показывает, что существующие в России нормативные документы предусматривают менее жесткие требования в обеспечении как балансовой, так и режимной надежности, чем это имеет место в энергообъединениях США и Европы. Критерий балансовой надежности, характеризуемый в наиболее общем виде вероятностью бездефицитной работы энергосистем, на Западе, как правило, на порядок выше, чем в России. В качестве критерия режим- ной надежности на Западе обычно используется критерий n-1, а в ряде случаев критерии и более высоких порядков. В то же время в энергосистемах России предусмотрено более широкое использование средств противоаварийного управления. При переходе к рыночным отношениям надежность становится все более экономической категорией, определяемой ценой, которую потребители согласны платить за заявленный уровень надежности. Это требует уточнения нормативных критериев балансовой и режимной надежности, отраженных в существующих нормативных документах, в соответствии с требованиями надежности со стороны потребителей, причем эти уточнения в условиях рынка электроэнергии будут идти в сторону ужесточения этих критериев, в частности, в сторону повышения показа- теля балансовой надежности – вероятности бездефицитной работы энергосистем – до величины порядка 0,9997 к концу рассматриваемого периода, как это предложено в [1], а также обязательного выполнения критерия n-1, а в ряде случаев для особо ответственных объектов – АЭС, систем внешнего электроснабжения мегаполисов, крупных городов и некоторых других – и критерия n-2. При этом необходимо будет уточнить всю совокупность связанных с ними критериев надежности, в том числе резервов мощности ЕЭС России, ОЭС, региональных энергосистем, пропускных способностей межсистемных связей, расчетных возмущений, при которых должна обеспечиваться динамическая устойчивость, и др.
Для обеспечения надежности ЕЭС России необходимо будет:
• Создать зоны эффективного управления региональными энергосистемами, в рамках которых будет обеспечиваться баланс мощности как в процессе функционирования, так и развития региональных энергосистем.
• Кардинально повысить надежность схем внешнего и внутреннего энергоснабжения крупных городов и мегаполисов.
• Создать государственную систему контроля за обеспечением надежности (ежегодный прогноз надежности на 10 лет, разработка национальных стандартов надежности, контроль за их выполнением).
• Создать автоматизированную систему – «управление спросом потребителей».
• Создать эффективную систему хозяйственного и технологического управления электроэнергетическим комплексом страны, обеспечивающую необходимое развитие генерирующих мощностей и электрических сетей, надежное и экономичное функционирование электроэнергетики.
• Принять соответствующие новым условиям нормативы надежности.