
- •Самарский государственный университет
- •1. Введение в математический анализ
- •1.1. Числовая функция одной переменной.
- •1.2. Числовая функция нескольких переменных.
- •1.3. Числовая последовательность.
- •1.5. Предел числовой последовательности.
- •1.6. Предел числовой функции одной переменной.
- •1.7. Предел числовой функции нескольких переменных.
- •1.8. Бесконечно малые, ограниченные, бесконечно большие и отделимые от нуля величины.
- •1.9. Простейшие свойства бесконечно малых величин.
- •1.10. Простейшие свойства пределов.
- •1.11. Сравнение бесконечно малых величин.
- •1.12. Свойства эквивалентных бмв. Главная часть бмв и ббв.
- •1.13. Предельный переход в неравенстве. Признаки существования предела. Замечательные пределы.
- •1.14. Таблица основных эквивалентных бмв.
- •1.15. Непрерывность функций в точке.
- •1.16. Односторонние пределы и классификация точек разрыва.
- •1.17. Свойства функций непрерывных на отрезке.
- •2. Дифференциальное исчисление
- •2.1. Производная и дифференциал числовой функции одной переменной.
- •2.2. Геометрический смысл производной и дифференциала числовой функции одной переменной.
- •2.3. Сводка правил для вычисления производной.
- •2.4. Частные производные и полный дифференциал числовой функции нескольких переменных.
- •2.5. Геометрический смысл частных производных и полного дифференциала.
- •2.6. Вычисление производных и дифференциалов сложных функций.
- •2.7. Вычисление производных неявных функций.
- •2.8. Производные и дифференциалы высших порядков для числовой функции одной переменной.
- •2.9. Частные производные и полные дифференциалы высших порядков.
- •2.10. Свойства функций, дифференцируемых на интервале.
- •2.11. Раскрытие неопределенностей по правилу Лопиталя
- •2.12. Формула Тейлора.
- •2.13. Представление некоторых функций по формуле Тейлора.
- •2.14. Приложения формулы Тейлора к исследованию функций
- •2.14.1. Главная часть бм
- •2.14.2 Возрастание и убывание функции
- •2.14.3. Экстремумы функции
- •2.14.4. Выпуклость и вогнутость кривой.
- •2.14.5. Точки перегиба кривой.
- •2.15. Формула Тейлора для числовой функции нескольких переменных.
- •2.16. Локальные экстремумы функции нескольких переменных.
- •2.17. Аппроксимация опытных данных по методу наименьших квадратов.
- •2.18. Производная скалярного поля по направлению. Градиент.
- •2.19. Условные экстремумы числовой функции нескольких переменных.
- •2.20. Формулировка задачи линейного программирования
2.20. Формулировка задачи линейного программирования
В задаче линейного программирования требуется найти экстремум линейной целевой функции
, (2.20.1)
при ограничениях
(2.20.2)
Здесь
– заданные постоянные величины.
Соотношения (2.20.1), (2.20.2) представляют
собой запись общей задачи линейного
программирования в развернутой форме.
Вектор
,
удовлетворяющий
системе ограничений (2.20.2), называется
допустимым
решением, или
планом
задачи
линейного программирования. Ограничения
(2.20.2) определяют область
допустимых решений, или
планов
задачи
линейного программирования.
План (допустимое решение), который доставляет максимум или минимум целевой функции (2.20.1), называется оптимальным планом (оптимальным решением) задачи линейного программирования.
Канонической формой записи задачи линейного программирования называют задачу вида
, (2.20.3)
при ограничениях
(2.20.4)
Существует еще векторная и матричная формы записи этой задачи, но для ее решения на компьютере они не пригодны.
Приведение
задачи линейного программирования к
каноническому виду осуществляется
введением в левую часть соответствующего
ограничения вида (2.20.2) дополнительной
переменной со знаком минус в случае
ограничения типа
и знаком плюс в случае ограничения типа
.
К математическим задачам линейного программирования приводят исследования конкретных производственно-хозяйственных ситуаций, которые в том или ином виде интерпретируются как задачи об оптимальном использовании ограниченных ресурсов (задача о раскрое, смесях, диете и т.д.).
Пример. (Задача о смесях).
Стандартом предусмотрено, что октановое число автомобильного бензина А-76 должно быть не ниже 76, а содержание серы в нем – не более 0,3%. Для изготовления такого бензина на заводе используется смесь из четырех компонентов. Данные о ресурсах смешиваемых компонентов, их себестоимости и их октановом числе, а также о содержании серы приведены в таблице
Характеристика |
Компонент автомобильного бензина | |||
№ 1 |
№2 |
№ 3 |
№4 | |
Октановое число |
68 |
72 |
80 |
90 |
Содержание серы, % |
0,35 |
0,35 |
0,3 |
0,2 |
Ресурсы, т |
700 |
600 |
500 |
300 |
Себестоимость, н.ед./т |
40 |
45 |
60 |
90 |
Требуется определить, сколько тонн каждого компонента следует использовать для получения 1000 т автомобильного бензина А-76, чтобы его себестоимость была минимальной.
Решение:
Пусть
– количество в смеси компонента с
номеромi.
С учетом этих обозначений задача минимума
себестоимости принимает вид
Первое функциональное ограничение отражает необходимость получения заданного количества смеси (1000 т), второе и третье – ограничения по октановому числу и содержанию серы в смеси, остальные – ограничения на имеющиеся объемы соответствующих ресурсов (компонентов). Прямые ограничения очевидны, но принципиально важны для выбора метода решения.
Полученная
математическая задача – задача линейного
программирования. Она может легко
решается на компьютере средствами
Excel. В результате решения получается
оптимальное решение
.