Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Подготовка у универсиаде 2012 / Lentiviral vectors basic to translational

.pdf
Скачиваний:
20
Добавлен:
06.06.2015
Размер:
681.94 Кб
Скачать

Lentiviral technology

613

 

 

Lentiviral vectors in the clinic

The first Phase I clinical trial using a HIV-based lentiviral vector expressing an antisense gene against HIV env was started for AIDS gene therapy in 2003 [230]. In that study, a VSV-G-pseudotyped vector with no HIV-1 accessory proteins, named VRX496, was produced from an advanced two-plasmid packaging system [231]. Five subjects who received a single dose ( 1010 cells) of VRX496-transduced autologous CD4+ T- cells resulted in an increase of CD4+ T-cells (four out of five subjects) and decrease of viral load (five out of five participants) after 1 year [232]. Lentiviral vector-mediated gene therapy for haematopoietic stem cells has also demonstrated initial clinical benefits in X-linked adrenoleukodystrophy [233]. A Phase I/II clinical trial of β-globin gene therapy for β-thalassaemia also began in 2007 [234]. A self-inactivating lentivector, LentiGlobin, contains large elements of the β-globin locus control region, and chromatin insulators (cHS4) were used to transduce CD34+ cells [235]. After approximately 3 years of treatment, the patients have corrected β-globin gene and stable blood haemoglobin levels [235]. No insertional mutagenesis has been reported from both trials so far, and these studies provide therapeutic benefit for the patients.

CLOSING REMARKS

As summarized above, considerable efforts have been made to increase the safety and efficacy of lentiviral vector systems. Currently available vectors are mostly generated from multiple plasmids, with no HIV-1 accessory gene and with self-inactivating modification, yet show high gene transduction efficiency in vitro and in vivo. It is also notable that no RCL has been observed in third-generation HIV-1 vectors. Because of their increased safety and proven efficiency, we can now purchase ready-to- use lentivector particles from various vendors. It is likely that lentivector technology will evolve further and expand into new research fields where the vector users may have a limited background in lentiviruses.

This state-of-the-art system represents a huge success for lentiviruses as a gene transfer vector system. However, it should be noted that these vectors are derived from pathogenic viruses. The possibility of generating an RCL may be very low, but may not be zero, where a single infection event of an oncogene-carrying lentiviral vector may be enough to induce tumours. (For guidance on biosafety considerations for research with lentiviral vectors, see http://oba.od.nih.gov/oba/ rac/Guidance/LentiVirus_Containment/pdf/Lenti_Containment_ Guidance.pdf.) When sufficient precautions are taken, the lentiviral vector technology will provide an effective and versatile platform which achieves various creative and innovative applications.

ACKNOWLEDGEMENT

We thank Chisato Sakuma (CINE-BOY) for creating custom three-dimensional animations.

REFERENCES

1Bukrinsky, M. I., Haggerty, S., Dempsey, M. P., Sharova, N., Adzhubel, A., Spitz, L., Lewis, P., Goldfarb, D., Emerman, M. and Stevenson, M. (1993) A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365, 666–669

2Freed, E. O. and Martin, M. A. (1994) HIV-1 infection of non-dividing cells. Nature 369, 107–108

3Garvey, K. J., Oberste, M. S., Elser, J. E., Braun, M. J. and Gonda, M. A. (1990) Nucleotide sequence and genome organization of biologically active proviruses of the bovine immunodeficiency-like virus. Virology 175, 391–409

4Gojobori, T., Moriyama, E. N., Ina, Y., Ikeo, K., Miura, T., Tsujimoto, H., Hayami, M. and Yokoyama, S. (1990) Evolutionary origin of human and simian immunodeficiency viruses. Proc. Natl. Acad. Sci. U.S.A. 87, 4108–4111

5Langley, R. J., Hirsch, V. M., O’Brien, S. J., Adger-Johnson, D., Goeken, R. M. and Olmsted, R. A. (1994) Nucleotide sequence analysis of puma lentivirus (PLV-14): genomic organization and relationship to other lentiviruses. Virology 202, 853–864

6Olmsted, R. A., Langley, R., Roelke, M. E., Goeken, R. M., Adger-Johnson, D., Goff, J. P., Albert, J. P., Packer, C., Laurenson, M. K. and Caro, T. M. (1992) Worldwide prevalence of lentivirus infection in wild feline species: epidemiologic and phylogenetic aspects. J. Virol. 66, 6008–6018

7Olmsted, R. A., Hirsch, V. M., Purcell, R. H. and Johnson, P. R. (1989) Nucleotide sequence analysis of feline immunodeficiency virus: genome organization and relationship to other lentiviruses. Proc. Natl. Acad. Sci. U.S.A. 86, 8088–8092

8Smith, T. F., Srinivasan, A., Schochetman, G., Marcus, M. and Myers, G. (1988) The phylogenetic history of immunodeficiency viruses. Nature 333, 573–575

9Sonigo, P., Alizon, M., Staskus, K., Klatzmann, D., Cole, S., Danos, O., Retzel, E., Tiollais, P., Haase, A. and Wain-Hobson, S. (1985) Nucleotide sequence of the visna lentivirus: relationship to the AIDS virus. Cell 42, 369–382

10von Schwedler, U. K., Stemmler, T. L., Klishko, V. Y., Li, S., Albertine, K. H., Davis, D. R. and Sundquist, W. I. (1998) Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J. 17, 1555–1568

11Henderson, L. E., Bowers, M. A., Sowder, 2nd, R. C., Serabyn, S. A., Johnson, D. G., Bess, Jr, J. W., Arthur, L. O., Bryant, D. K. and Fenselau, C. (1992) Gag proteins of the highly replicative MN strain of human immunodeficiency virus type 1: posttranslational modifications, proteolytic processings, and complete amino acid sequences. J. Virol. 66, 1856–1865

12Mervis, R. J., Ahmad, N., Lillehoj, E. P., Raum, M. G., Salazar, F. H., Chan, H. W. and Venkatesan, S. (1988) The gag gene products of human immunodeficiency virus type 1: alignment within the gag open reading frame, identification of posttranslational modifications, and evidence for alternative gag precursors. J. Virol. 62, 3993–4002

13Fanales-Belasio, E., Raimondo, M., Suligoi, B. and Butto, S. (2010) HIV virology and pathogenetic mechanisms of infection: a brief overview. Ann. Ist. Super. Sanita 46, 5–14

14Cimarelli, A. and Darlix, J. L. (2002) Assembling the human immunodeficiency virus type 1. Cell. Mol. Life Sci. 59, 1166–1184

15Warrilow, D., Tachedjian, G. and Harrich, D. (2009) Maturation of the HIV reverse transcription complex: putting the jigsaw together. Rev. Med. Virol. 19, 324–337

16Wei, P., Garber, M. E., Fang, S. M., Fischer, W. H. and Jones, K. A. (1998) A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92, 451–462

17Malim, M. H., Hauber, J., Le, S. Y., Maizel, J. V. and Cullen, B. R. (1989) The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338, 254–257

18Haseltine, W. A. (1988) Replication and pathogenesis of the AIDS virus. J. Acquired Immune Defic. Syndr. 1, 217–240

19Reference deleted

20Terwilliger, E. F., Godin, B., Sodroski, J. G. and Haseltine, W. A. (1989) Construction and use of a replication-competent human immunodeficiency virus (HIV-1) that expresses the chloramphenicol acetyltransferase enzyme. Proc. Natl. Acad. Sci. U.S.A. 86, 3857–3861

21Helseth, E., Kowalski, M., Gabuzda, D., Olshevsky, U., Haseltine, W. and Sodroski, J. (1990) Rapid complementation assays measuring replicative potential of human immunodeficiency virus type 1 envelope glycoprotein mutants. J. Virol. 64, 2416–2420

22Page, K. A., Landau, N. R. and Littman, D. R. (1990) Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J. Virol. 64, 5270–5276

23Landau, N. R., Page, K. A. and Littman, D. R. (1991) Pseudotyping with human T-cell leukemia virus type I broadens the human immunodeficiency virus host range. J. Virol. 65, 162–169

24Richardson, J. H., Child, L. A. and Lever, A. M. (1993) Packaging of human immunodeficiency virus type 1 RNA requires cis-acting sequences outside the 5 leader region. J. Virol. 67, 3997–4005

25Burns, J. C., Friedmann, T., Driever, W., Burrascano, M. and Yee, J. K. (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. U.S.A. 90, 8033–8037

26Coil, D. A. and Miller, A. D. (2004) Phosphatidylserine is not the cell surface receptor for vesicular stomatitis virus. J. Virol. 78, 10920–10926

27Akkina, R. K., Walton, R. M., Chen, M. L., Li, Q. X., Planelles, V. and Chen, I. S. (1996) High-efficiency gene transfer into CD34 + cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J. Virol. 70, 2581–2585

c The Authors Journal compilation c 2012 Biochemical Society

614

T. Sakuma, M. A. Barry and Y. Ikeda

 

 

28Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., Verma, I. M. and Trono, D. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267

29Fouchier, R. A., Simon, J. H., Jaffe, A. B. and Malim, M. H. (1996) Human immunodeficiency virus type 1 Vif does not influence expression or virion incorporation of gag-, pol-, and env-encoded proteins. J. Virol. 70, 8263–8269

30Harris, R. S., Bishop, K. N., Sheehy, A. M., Craig, H. M., Petersen-Mahrt, S. K., Watt, I. N., Neuberger, M. S. and Malim, M. H. (2003) DNA deamination mediates innate immunity to retroviral infection. Cell 113, 803–809

31Neil, S. J., Zang, T. and Bieniasz, P. D. (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451, 425–430

32Sakuma, T., Noda, T., Urata, S., Kawaoka, Y. and Yasuda, J. (2009) Inhibition of Lassa and Marburg virus production by tetherin. J. Virol. 83, 2382–2385

33Collins, K. L., Chen, B. K., Kalams, S. A., Walker, B. D. and Baltimore, D. (1998) HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391, 397–401

34Zufferey, R., Nagy, D., Mandel, R. J., Naldini, L. and Trono, D. (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15, 871–875

35Yu, S. F., von Ruden, T., Kantoff, P. W., Garber, C., Seiberg, M., Ruther, U., Anderson, W. F., Wagner, E. F. and Gilboa, E. (1986) Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 83, 3194–3198

36Miyoshi, H., Blomer, U., Takahashi, M., Gage, F. H. and Verma, I. M. (1998) Development of a self-inactivating lentivirus vector. J. Virol. 72, 8150–8157

37Zufferey, R., Dull, T., Mandel, R. J., Bukovsky, A., Quiroz, D., Naldini, L. and Trono, D. (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72, 9873–9880

38Iwakuma, T., Cui, Y. and Chang, L. J. (1999) Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology 261, 120–132

39Laspia, M. F., Rice, A. P. and Mathews, M. B. (1989) HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell 59, 283–292

40Terwilliger, E., Burghoff, R., Sia, R., Sodroski, J., Haseltine, W. and Rosen, C. (1988) The art gene product of human immunodeficiency virus is required for replication. J. Virol. 62, 655–658

41Dull, T., Zufferey, R., Kelly, M., Mandel, R. J., Nguyen, M., Trono, D. and Naldini, L. (1998) A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471

42Kim, V. N., Mitrophanous, K., Kingsman, S. M. and Kingsman, A. J. (1998) Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1. J. Virol. 72, 811–816

43Escarpe, P., Zayek, N., Chin, P., Borellini, F., Zufferey, R., Veres, G. and Kiermer, V. (2003) Development of a sensitive assay for detection of replication-competent recombinant lentivirus in large-scale HIV-based vector preparations. Mol. Ther. 8, 332–341

44Charneau, P., Alizon, M. and Clavel, F. (1992) A second origin of DNA plus-strand synthesis is required for optimal human immunodeficiency virus replication. J. Virol. 66, 2814–2820

45Zennou, V., Petit, C., Guetard, D., Nerhbass, U., Montagnier, L. and Charneau, P. (2000) HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101, 173–185

46Dvorin, J. D., Bell, P., Maul, G. G., Yamashita, M., Emerman, M. and Malim, M. H. (2002) Reassessment of the roles of integrase and the central DNA flap in human immunodeficiency virus type 1 nuclear import. J. Virol. 76, 12087–12096

47Zennou, V., Serguera, C., Sarkis, C., Colin, P., Perret, E., Mallet, J. and Charneau, P. (2001) The HIV-1 DNA flap stimulates HIV vector-mediated cell transduction in the brain. Nat. Biotechnol. 19, 446–450

48Van Maele, B., De Rijck, J., De Clercq, E. and Debyser, Z. (2003) Impact of the central polypurine tract on the kinetics of human immunodeficiency virus type 1 vector transduction. J. Virol. 77, 4685–4694

49Demaison, C., Parsley, K., Brouns, G., Scherr, M., Battmer, K., Kinnon, C., Grez, M. and Thrasher, A. J. (2002) High-level transduction and gene expression in hematopoietic repopulating cells using a human imunodeficiency virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum. Gene Ther. 13, 803–813

50Park, F. and Kay, M. A. (2001) Modified HIV-1 based lentiviral vectors have an effect on viral transduction efficiency and gene expression in vitro and in vivo. Mol. Ther. 4, 164–173

51Donello, J. E., Loeb, J. E. and Hope, T. J. (1998) Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element. J. Virol. 72, 5085–5092

52Zufferey, R., Donello, J. E., Trono, D. and Hope, T. J. (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol. 73, 2886–2892

53Brun, S., Faucon-Biguet, N. and Mallet, J. (2003) Optimization of transgene expression at the posttranscriptional level in neural cells: implications for gene therapy. Mol. Ther. 7, 782–789

c The Authors Journal compilation c 2012 Biochemical Society

54Ramezani, A., Hawley, T. S. and Hawley, R. G. (2000) Lentiviral vectors for enhanced gene expression in human hematopoietic cells. Mol. Ther. 2, 458–469

55Kingsman, S. M., Mitrophanous, K. and Olsen, J. C. (2005) Potential oncogene activity of the woodchuck hepatitis post-transcriptional regulatory element (WPRE). Gene Ther. 12, 3–4

56Zanta-Boussif, M. A., Charrier, S., Brice-Ouzet, A., Martin, S., Opolon, P., Thrasher, A. J., Hope, T. J. and Galy, A. (2009) Validation of a mutated PRE sequence allowing high and sustained transgene expression while abrogating WHV-X protein synthesis: application to the gene therapy of WAS. Gene Ther. 16, 605–619

57Otto, E., Jones-Trower, A., Vanin, E. F., Stambaugh, K., Mueller, S. N., Anderson, W. F. and McGarrity, G. J. (1994) Characterization of a replication-competent retrovirus resulting from recombination of packaging and vector sequences. Hum. Gene Ther. 5, 567–575

58Wu, X., Wakefield, J. K., Liu, H., Xiao, H., Kralovics, R., Prchal, J. T. and Kappes, J. C. (2000) Development of a novel trans-lentiviral vector that affords predictable safety. Mol. Ther. 2, 47–55

59Sastry, L., Xu, Y., Johnson, T., Desai, K., Rissing, D., Marsh, J. and Cornetta, K. (2003) Certification assays for HIV-1-based vectors: frequent passage of gag sequences without evidence of replication-competent viruses. Mol. Ther. 8, 830–839

60Ikeda, Y., Takeuchi, Y., Martin, F., Cosset, F. L., Mitrophanous, K. and Collins, M. (2003) Continuous high-titer HIV-1 vector production. Nat. Biotechnol. 21, 569–572

61Segall, H. I., Yoo, E. and Sutton, R. E. (2003) Characterization and detection of artificial replication-competent lentivirus of altered host range. Mol. Ther. 8, 118–129

62Schwartz, S., Felber, B. K. and Pavlakis, G. N. (1992) Distinct RNA sequences in the gag region of human immunodeficiency virus type 1 decrease RNA stability and inhibit expression in the absence of Rev protein. J. Virol. 66, 150–159

63Kotsopoulou, E., Kim, V. N., Kingsman, A. J., Kingsman, S. M. and Mitrophanous, K. A. (2000) A Rev-independent human immunodeficiency virus type 1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag-pol gene. J. Virol. 74, 4839–4852

64Wagner, R., Graf, M., Bieler, K., Wolf, H., Grunwald, T., Foley, P. and Uberla, K. (2000) Rev-independent expression of synthetic gag-pol genes of human immunodeficiency virus type 1 and simian immunodeficiency virus: implications for the safety of lentiviral vectors. Hum. Gene Ther. 11, 2403–2413

65Gasmi, M., Glynn, J., Jin, M. J., Jolly, D. J., Yee, J. K. and Chen, S. T. (1999) Requirements for efficient production and transduction of human immunodeficiency virus type 1-based vectors. J. Virol. 73, 1828–1834

66Mautino, M. R., Keiser, N. and Morgan, R. A. (2000) Improved titers of HIV-based lentiviral vectors using the SRV-1 constitutive transport element. Gene Ther. 7, 1421–1424

67Anson, D. S. and Fuller, M. (2003) Rational development of a HIV-1 gene therapy vector.

J.Gene Med. 5, 829–838

68Cockrell, A. S., Ma, H., Fu, K., McCown, T. J. and Kafri, T. (2006) A trans-lentiviral packaging cell line for high-titer conditional self-inactivating HIV-1 vectors. Mol. Ther. 14, 276–284

69White, S. M., Renda, M., Nam, N. Y., Klimatcheva, E., Zhu, Y., Fisk, J., Halterman, M., Rimel, B. J., Federoff, H., Pandya, S. et al. (1999) Lentivirus vectors using human and simian immunodeficiency virus elements. J. Virol. 73, 2832–2840

70Poeschla, E., Gilbert, J., Li, X., Huang, S., Ho, A. and Wong-Staal, F. (1998) Identification of a human immunodeficiency virus type 2 (HIV-2) encapsidation determinant and transduction of nondividing human cells by HIV-2-based lentivirus vectors. J. Virol. 72, 6527–6536

71Negre, D., Mangeot, P. E., Duisit, G., Blanchard, S., Vidalain, P. O., Leissner, P., Winter,

A.J., Rabourdin-Combe, C., Mehtali, M., Moullier, P. et al. (2000) Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells. Gene Ther. 7, 1613–1623

72Hatziioannou, T., Cowan, S. and Bieniasz, P. D. (2004) Capsid-dependent and -independent postentry restriction of primate lentivirus tropism in rodent cells. J. Virol. 78, 1006–1011

73Hanawa, H., Hematti, P., Keyvanfar, K., Metzger, M. E., Krouse, A., Donahue, R. E., Kepes, S., Gray, J., Dunbar, C. E., Persons, D. A. and Nienhuis, A. W. (2004) Efficient gene transfer into rhesus repopulating hematopoietic stem cells using a simian immunodeficiency virus-based lentiviral vector system. Blood 103, 4062–4069

74Naumann, N., De Ravin, S. S., Choi, U., Moayeri, M., Whiting-Theobald, N., Linton,

G.F., Ikeda, Y. and Malech, H. L. (2007) Simian immunodeficiency virus lentivector corrects human X-linked chronic granulomatous disease in the NOD/SCID mouse xenograft. Gene Ther. 14, 1513–1524

75Shimojima, M., Miyazawa, T., Ikeda, Y., McMonagle, E. L., Haining, H., Akashi, H., Takeuchi, Y., Hosie, M. J. and Willett, B. J. (2004) Use of CD134 as a primary receptor by the feline immunodeficiency virus. Science 303, 1192–1195

76Ikeda, Y., Tomonaga, K., Kawaguchi, Y., Kohmoto, M., Inoshima, Y., Tohya, Y., Miyazawa, T., Kai, C. and Mikami, T. (1996) Feline immunodeficiency virus can infect a human cell line (MOLT-4) but establishes a state of latency in the cells. J. Gen. Virol. 77, 1623–1630

Lentiviral technology

615

 

 

77Poeschla, E. M., Wong-Staal, F. and Looney, D. J. (1998) Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nat. Med. 4, 354–357

78Mitrophanous, K., Yoon, S., Rohll, J., Patil, D., Wilkes, F., Kim, V., Kingsman, S., Kingsman, A. and Mazarakis, N. (1999) Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther. 6, 1808–1818

79Olsen, J. C. (1998) Gene transfer vectors derived from equine infectious anemia virus. Gene Ther. 5, 1481–1487

80Matukonis, M., Li, M., Molina, R. P., Paszkiet, B., Kaleko, M. and Luo, T. (2002) Development of secondand third-generation bovine immunodeficiency virus-based gene transfer systems. Hum. Gene Ther. 13, 1293–1303

81Curran, M. A., Kaiser, S. M., Achacoso, P. L. and Nolan, G. P. (2000) Efficient transduction of nondividing cells by optimized feline immunodeficiency virus vectors. Mol. Ther. 1, 31–38

82Ikeda, Y., Collins, M. K., Radcliffe, P. A., Mitrophanous, K. A. and Takeuchi, Y. (2002) Gene transduction efficiency in cells of different species by HIV and EIAV vectors. Gene Ther. 9, 932–938

83Saenz, D. T., Teo, W., Olsen, J. C. and Poeschla, E. M. (2005) Restriction of feline immunodeficiency virus by Ref1, Lv1, and primate TRIM5α proteins. J. Virol. 79, 15175–15188

84Dropulic, B. (2001) Lentivirus in the clinic. Mol. Ther. 4, 511–512

85Themis, M., Waddington, S. N., Schmidt, M., von Kalle, C., Wang, Y., Al-Allaf, F., Gregory, L. G., Nivsarkar, M., Themis, M., Holder, M. V. et al. (2005) Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice. Mol. Ther. 12, 763–771

86Labrador, M. and Corces, V. G. (2002) Setting the boundaries of chromatin domains and nuclear organization. Cell 111, 151–154

87Arumugam, P. I., Scholes, J., Perelman, N., Xia, P., Yee, J. K. and Malik, P. (2007) Improved human β-globin expression from self-inactivating lentiviral vectors carrying the chicken hypersensitive site-4 (cHS4) insulator element. Mol. Ther. 15, 1863–1871

88Aker, M., Tubb, J., Groth, A. C., Bukovsky, A. A., Bell, A. C., Felsenfeld, G., Kiem, H. P., Stamatoyannopoulos, G. and Emery, D. W. (2007) Extended core sequences from the cHS4 insulator are necessary for protecting retroviral vectors from silencing position effects. Hum. Gene Ther. 18, 333–343

89Uchida, N., Washington, K. N., Lap, C. J., Hsieh, M. M. and Tisdale, J. F. (2011) Chicken HS4 insulators have minimal barrier function among progeny of human hematopoietic cells transduced with an HIV1-based lentiviral vector. Mol. Ther. 19, 133–139

90Zhang, F., Thornhill, S. I., Howe, S. J., Ulaganathan, M., Schambach, A., Sinclair, J., Kinnon, C., Gaspar, H. B., Antoniou, M. and Thrasher, A. J. (2007) Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells. Blood 110, 1448–1457

91Zhang, F., Frost, A. R., Blundell, M. P., Bales, O., Antoniou, M. N. and Thrasher, A. J. (2010) A ubiquitous chromatin opening element (UCOE) confers resistance to DNA methylation-mediated silencing of lentiviral vectors. Mol. Ther. 18, 1640–1649

92Kootstra, N. A., Munk, C., Tonnu, N., Landau, N. R. and Verma, I. M. (2003) Abrogation of postentry restriction of HIV-1-based lentiviral vector transduction in simian cells. Proc. Natl. Acad. Sci. U.S.A. 100, 1298–1303

93Ikeda, Y., Ylinen, L. M., Kahar-Bador, M. and Towers, G. J. (2004) Influence of gag on human immunodeficiency virus type 1 species-specific tropism. J. Virol. 78, 11816–11822

94Neil, S., Martin, F., Ikeda, Y. and Collins, M. (2001) Postentry restriction to human immunodeficiency virus-based vector transduction in human monocytes. J. Virol. 75, 5448–5456

95Mangeot, P. E., Duperrier, K., Negre, D., Boson, B., Rigal, D., Cosset, F. L. and Darlix,

J.L. (2002) High levels of transduction of human dendritic cells with optimized SIV vectors. Mol. Ther. 5, 283–290

96Muhlebach, M. D., Wolfrum, N., Schule, S., Tschulena, U., Sanzenbacher, R., Flory, E., Cichutek, K. and Schweizer, M. (2005) Stable transduction of primary human monocytes by simian lentiviral vector PBj. Mol. Ther. 12, 1206–1216

97Laguette, N., Sobhian, B., Casartelli, N., Ringeard, M., Chable-Bessia, C., Segeral, E., Yatim, A., Emiliani, S., Schwartz, O. and Benkirane, M. (2011) SAMHD1 is the dendriticand myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654–657

98Berger, G., Durand, S., Goujon, C., Nguyen, X. N., Cordeil, S., Darlix, J. L. and Cimarelli,

A.(2011) A simple, versatile and efficient method to genetically modify human monocyte-derived dendritic cells with HIV-1-derived lentiviral vectors. Nat. Protoc. 6, 806–816

99Stitz, J., Buchholz, C. J., Engelstadter, M., Uckert, W., Bloemer, U., Schmitt, I. and Cichutek, K. (2000) Lentiviral vectors pseudotyped with envelope glycoproteins derived from gibbon ape leukemia virus and murine leukemia virus 10A1. Virology 273, 16–20

100Strang, B. L., Ikeda, Y., Cosset, F. L., Collins, M. K. and Takeuchi, Y. (2004) Characterization of HIV-1 vectors with gammaretrovirus envelope glycoproteins produced from stable packaging cells. Gene Ther. 11, 591–598

101Rasko, J. E., Battini, J. L., Gottschalk, R. J., Mazo, I. and Miller, A. D. (1999) The RD114/simian type D retrovirus receptor is a neutral amino acid transporter. Proc. Natl. Acad. Sci. U.S.A. 96, 2129–2134

102Sakuma, T., De Ravin, S. S., Tonne, J. M., Thatava, T., Ohmine, S., Takeuchi, Y., Malech,

H.L. and Ikeda, Y. (2010) Characterization of retroviral and lentiviral vectors pseudotyped with xenotropic murine leukemia virus-related virus envelope glycoprotein. Hum. Gene Ther. 21, 1665–1673

103Kahl, C. A., Marsh, J., Fyffe, J., Sanders, D. A. and Cornetta, K. (2004) Human immunodeficiency virus type 1-derived lentivirus vectors pseudotyped with envelope glycoproteins derived from Ross River virus and Semliki Forest virus. J. Virol. 78, 1421–1430

104Strang, B. L., Takeuchi, Y., Relander, T., Richter, J., Bailey, R., Sanders, D. A., Collins,

M.K. and Ikeda, Y. (2005) Human immunodeficiency virus type 1 vectors with alphavirus envelope glycoproteins produced from stable packaging cells. J. Virol. 79, 1765–1771

105Beyer, W. R., Westphal, M., Ostertag, W. and von Laer, D. (2002) Oncoretrovirus and lentivirus vectors pseudotyped with lymphocytic choriomeningitis virus glycoprotein: generation, concentration, and broad host range. J. Virol. 76, 1488–1495

106Watson, D. J., Kobinger, G. P., Passini, M. A., Wilson, J. M. and Wolfe, J. H. (2002) Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins. Mol. Ther. 5, 528–537

107Mochizuki, H., Schwartz, J. P., Tanaka, K., Brady, R. O. and Reiser, J. (1998) High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J. Virol. 72, 8873–8883

108Hanawa, H., Kelly, P. F., Nathwani, A. C., Persons, D. A., Vandergriff, J. A., Hargrove, P., Vanin, E. F. and Nienhuis, A. W. (2002) Comparison of various envelope proteins for their ability to pseudotype lentiviral vectors and transduce primitive hematopoietic cells from human blood. Mol. Ther. 5, 242–251

109Relander, T., Johansson, M., Olsson, K., Ikeda, Y., Takeuchi, Y., Collins, M. and Richter,

J.(2005) Gene transfer to repopulating human CD34 + cells using amphotropic-, GALV-, or RD114-pseudotyped HIV-1-based vectors from stable producer cells. Mol. Ther. 11, 452–459

110Sinn, P. L., Hickey, M. A., Staber, P. D., Dylla, D. E., Jeffers, S. A., Davidson, B. L., Sanders, D. A. and McCray, Jr, P. B. (2003) Lentivirus vectors pseudotyped with filoviral envelope glycoproteins transduce airway epithelia from the apical surface independently of folate receptor α. J. Virol. 77, 5902–5910

111Yang, L., Bailey, L., Baltimore, D. and Wang, P. (2006) Targeting lentiviral vectors to specific cell types in vivo. Proc. Natl. Acad. Sci. U.S.A. 103, 11479–11484

112Maurice, M., Verhoeyen, E., Salmon, P., Trono, D., Russell, S. J. and Cosset, F. L. (2002) Efficient gene transfer into human primary blood lymphocytes by surface-engineered lentiviral vectors that display a T cell-activating polypeptide. Blood 99, 2342–2350

113Morizono, K., Xie, Y., Ringpis, G. E., Johnson, M., Nassanian, H., Lee, B., Wu, L. and Chen, I. S. (2005) Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection. Nat. Med. 11, 346–352

114Funke, S., Maisner, A., Muhlebach, M. D., Koehl, U., Grez, M., Cattaneo, R., Cichutek,

K.and Buchholz, C. J. (2008) Targeted cell entry of lentiviral vectors. Mol. Ther. 16, 1427–1436

115Frecha, C., Costa, C., Negre, D., Gauthier, E., Russell, S. J., Cosset, F. L. and Verhoeyen,

E.(2008) Stable transduction of quiescent T cells without induction of cycle progression by a novel lentiviral vector pseudotyped with measles virus glycoproteins. Blood 112, 4843–4852

116Hioki, H., Kameda, H., Nakamura, H., Okunomiya, T., Ohira, K., Nakamura, K., Kuroda, M., Furuta, T. and Kaneko, T. (2007) Efficient gene transduction of neurons by lentivirus with enhanced neuron-specific promoters. Gene Ther. 14, 872–882

117Lopes, L., Dewannieux, M., Gileadi, U., Bailey, R., Ikeda, Y., Whittaker, C., Collin, M. P., Cerundolo, V., Tomihari, M., Ariizumi, K. and Collins, M. K. (2008) Immunization with a lentivector that targets tumor antigen expression to dendritic cells induces potent CD8 + and CD4 + T-cell responses. J. Virol. 82, 86–95

118De Palma, M., Venneri, M. A., Roca, C. and Naldini, L. (2003) Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat. Med. 9, 789–795

119Schmeckpeper, J., Ikeda, Y., Kumar, A. H., Metharom, P., Russell, S. J. and Caplice,

N.M. (2009) Lentiviral tracking of vascular differentiation in bone marrow progenitor cells. Differentiation 78, 169–176

120Park, F., Ohashi, K. and Kay, M. A. (2003) The effect of age on hepatic gene transfer with self-inactivating lentiviral vectors in vivo. Mol. Ther. 8, 314–323

121Lai, E. C. (2002) Micro RNAs are complementary to 3 UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 30, 363–364

122Brown, B. D., Cantore, A., Annoni, A., Sergi, L. S., Lombardo, A., Della Valle, P., D’Angelo, A. and Naldini, L. (2007) A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 110, 4144–4152

c The Authors Journal compilation c 2012 Biochemical Society

616

T. Sakuma, M. A. Barry and Y. Ikeda

 

 

123Gilham, D. E., Lie, A.L.M., Taylor, N. and Hawkins, R. E. (2010) Cytokine stimulation and the choice of promoter are critical factors for the efficient transduction of mouse T cells with HIV-1 vectors. J. Gene Med. 12, 129–136

124Jones, S., Peng, P. D., Yang, S., Hsu, C., Cohen, C. J., Zhao, Y., Abad, J., Zheng, Z., Rosenberg, S. A. and Morgan, R. A. (2009) Lentiviral vector design for optimal T cell receptor gene expression in the transduction of peripheral blood lymphocytes and tumor-infiltrating lymphocytes. Hum. Gene Ther. 20, 630–640

125Ni, Y., Sun, S., Oparaocha, I., Humeau, L., Davis, B., Cohen, R., Binder, G., Chang, Y. N., Slepushkin, V. and Dropulic, B. (2005) Generation of a packaging cell line for prolonged large-scale production of high-titer HIV-1-based lentiviral vector. J. Gene Med. 7, 818–834

126Farson, D., Witt, R., McGuinness, R., Dull, T., Kelly, M., Song, J., Radeke, R., Bukovsky, A., Consiglio, A. and Naldini, L. (2001) A new-generation stable inducible packaging cell line for lentiviral vectors. Hum. Gene Ther. 12, 981–997

127Pacchia, A. L., Adelson, M. E., Kaul, M., Ron, Y. and Dougherty, J. P. (2001) An inducible packaging cell system for safe, efficient lentiviral vector production in the absence of HIV-1 accessory proteins. Virology 282, 77–86

128Klages, N., Zufferey, R. and Trono, D. (2000) A stable system for the high-titer production of multiply attenuated lentiviral vectors. Mol. Ther. 2, 170–176

129Kafri, T., van Praag, H., Ouyang, L., Gage, F. H. and Verma, I. M. (1999) A packaging cell line for lentivirus vectors. J. Virol. 73, 576–584

130Xu, K., Ma, H., McCown, T. J., Verma, I. M. and Kafri, T. (2001) Generation of a stable cell line producing high-titer self-inactivating lentiviral vectors. Mol. Ther. 3, 97–104

131Throm, R. E., Ouma, A. A., Zhou, S., Chandrasekaran, A., Lockey, T., Greene, M., De Ravin, S. S., Moayeri, M., Malech, H. L., Sorrentino, B. P. and Gray, J. T. (2009) Efficient construction of producer cell lines for a SIN lentiviral vector for SCID-X1 gene therapy by concatemeric array transfection. Blood 113, 5104–5110

132Reiser, J. (2000) Production and concentration of pseudotyped HIV-1-based gene transfer vectors. Gene Ther. 7, 910–913

133VandenDriessche, T., Thorrez, L., Naldini, L., Follenzi, A., Moons, L., Berneman, Z., Collen, D. and Chuah, M. K. (2002) Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. Blood 100, 813–822

134Pham, L., Ye, H., Cosset, F. L., Russell, S. J. and Peng, K. W. (2001) Concentration of viral vectors by co-precipitation with calcium phosphate. J. Gene Med. 3,

188–194

135Geraerts, M., Willems, S., Baekelandt, V., Debyser, Z. and Gijsbers, R. (2006) Comparison of lentiviral vector titration methods. BMC Biotechnol. 6, 34

136Rowe, H. M., Lopes, L., Ikeda, Y., Bailey, R., Barde, I., Zenke, M., Chain, B. M. and Collins, M. K. (2006) Immunization with a lentiviral vector stimulates both CD4 and CD8 T cell responses to an ovalbumin transgene. Mol. Ther. 13, 310–319

137Pichlmair, A., Diebold, S. S., Gschmeissner, S., Takeuchi, Y., Ikeda, Y., Collins, M. K. and Reis e Sousa, C. (2007) Tubulovesicular structures within vesicular stomatitis virus G protein-pseudotyped lentiviral vector preparations carry DNA and stimulate antiviral responses via Toll-like receptor 9. J. Virol. 81, 539–547

138Naldini, L., Blomer, U., Gage, F. H., Trono, D. and Verma, I. M. (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. U.S.A. 93, 11382–11388

139Sandrin, V., Boson, B., Salmon, P., Gay, W., Negre, D., Le Grand, R., Trono, D. and Cosset, F. L. (2002) Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34 + cells derived from human and nonhuman primates. Blood 100, 823–832

140Hacein-Bey-Abina, S., Von Kalle, C., Schmidt, M., McCormack, M. P., Wulffraat, N., Leboulch, P., Lim, A., Osborne, C. S., Pawliuk, R., Morillon, E. et al. (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419

141Cavazzana-Calvo, M., Hacein-Bey, S., de Saint Basile, G., Gross, F., Yvon, E., Nusbaum, P., Selz, F., Hue, C., Certain, S., Casanova, J. L. et al. (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672

142Gaspar, H. B., Parsley, K. L., Howe, S., King, D., Gilmour, K. C., Sinclair, J., Brouns, G., Schmidt, M., Von Kalle, C., Barington, T. et al. (2004) Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 364, 2181–2187

143Schwarzwaelder, K., Howe, S. J., Schmidt, M., Brugman, M. H., Deichmann, A., Glimm, H., Schmidt, S., Prinz, C., Wissler, M., King, D. J. et al. (2007) Gammaretrovirusmediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo. J. Clin. Invest. 117, 2241–2249

144Chinen, J., Davis, J., De Ravin, S. S., Hay, B. N., Hsu, A. P., Linton, G. F., Naumann, N., Nomicos, E. Y., Silvin, C., Ulrick, J. et al. (2007) Gene therapy improves immune function in preadolescents with X-linked severe combined immunodeficiency. Blood 110, 67–73

c The Authors Journal compilation c 2012 Biochemical Society

145Hacein-Bey-Abina, S., Hauer, J., Lim, A., Picard, C., Wang, G. P., Berry, C. C., Martinache, C., Rieux-Laucat, F., Latour, S., Belohradsky, B. H. et al. (2010) Efficacy of gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 363, 355–364

146Wu, X., Li, Y., Crise, B. and Burgess, S. M. (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300, 1749–1751

147Mitchell, R. S., Beitzel, B. F., Schroder, A. R., Shinn, P., Chen, H., Berry, C. C., Ecker,

J.R. and Bushman, F. D. (2004) Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2, E234

148Schroder, A. R., Shinn, P., Chen, H., Berry, C., Ecker, J. R. and Bushman, F. (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110, 521–529

149Llano, M., Saenz, D. T., Meehan, A., Wongthida, P., Peretz, M., Walker, W. H., Teo, W. and Poeschla, E. M. (2006) An essential role for LEDGF/p75 in HIV integration. Science 314, 461–464

150Ciuffi, A., Llano, M., Poeschla, E., Hoffmann, C., Leipzig, J., Shinn, P., Ecker, J. R. and Bushman, F. (2005) A role for LEDGF/p75 in targeting HIV DNA integration. Nat. Med. 11, 1287–1289

151Montini, E., Cesana, D., Schmidt, M., Sanvito, F., Ponzoni, M., Bartholomae, C., Sergi Sergi, L., Benedicenti, F., Ambrosi, A., Di Serio, C. et al. (2006) Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat. Biotechnol. 24, 687–696

152Modlich, U., Navarro, S., Zychlinski, D., Maetzig, T., Knoess, S., Brugman, M. H., Schambach, A., Charrier, S., Galy, A., Thrasher, A. J. et al. (2009) Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol. Ther. 17, 1919–1928

153Montini, E., Cesana, D., Schmidt, M., Sanvito, F., Bartholomae, C. C., Ranzani, M., Benedicenti, F., Sergi, L. S., Ambrosi, A., Ponzoni, M. et al. (2009) The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J. Clin. Invest. 119, 964–975

154Woods, N. B., Bottero, V., Schmidt, M., von Kalle, C. and Verma, I. M. (2006) Gene therapy: therapeutic gene causing lymphoma. Nature 440, 1123

155Ginn, S. L., Liao, S. H., Dane, A. P., Hu, M., Hyman, J., Finnie, J. W., Zheng, M., Cavazzana-Calvo, M., Alexander, S. I., Thrasher, A. J. and Alexander, I. E. (2010) Lymphomagenesis in SCID-X1 mice following lentivirus-mediated phenotype correction independent of insertional mutagenesis and γ c overexpression. Mol. Ther. 18, 965–976

156Saenz, D. T., Loewen, N., Peretz, M., Whitwam, T., Barraza, R., Howell, K. G., Holmes,

J.M., Good, M. and Poeschla, E. M. (2004) Unintegrated lentivirus DNA persistence and accessibility to expression in nondividing cells: analysis with class I integrase mutants.

J.Virol. 78, 2906–2920

157Leavitt, A. D., Robles, G., Alesandro, N. and Varmus, H. E. (1996) Human immunodeficiency virus type 1 integrase mutants retain in vitro integrase activity yet fail to integrate viral DNA efficiently during infection. J. Virol. 70, 721–728

158Nightingale, S. J., Hollis, R. P., Pepper, K. A., Petersen, D., Yu, X. J., Yang, C., Bahner, I. and Kohn, D. B. (2006) Transient gene expression by nonintegrating lentiviral vectors. Mol. Ther. 13, 1121–1132

159Apolonia, L., Waddington, S. N., Fernandes, C., Ward, N. J., Bouma, G., Blundell, M. P., Thrasher, A. J., Collins, M. K. and Philpott, N. J. (2007) Stable gene transfer to muscle using non-integrating lentiviral vectors. Mol. Ther. 15, 1947–1954

160Philippe, S., Sarkis, C., Barkats, M., Mammeri, H., Ladroue, C., Petit, C., Mallet, J. and Serguera, C. (2006) Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. 103, 17684–17689

161Yanez-Munoz, R. J., Balaggan, K. S., MacNeil, A., Howe, S. J., Schmidt, M., Smith, A. J., Buch, P., MacLaren, R. E., Anderson, P. N., Barker, S. E. et al. (2006) Effective gene therapy with nonintegrating lentiviral vectors. Nat. Med. 12, 348–353

162Pfeifer, A., Brandon, E. P., Kootstra, N., Gage, F. H. and Verma, I. M. (2001) Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo. Proc. Natl. Acad. Sci. U.S.A. 98, 11450–11455

163Ventura, A., Meissner, A., Dillon, C. P., McManus, M., Sharp, P. A., Van Parijs, L., Jaenisch, R. and Jacks, T. (2004) Cre-lox-regulated conditional RNA interference from transgenes. Proc. Natl. Acad. Sci. U.S.A. 101, 10380–10385

164Miller, J. C., Holmes, M. C., Wang, J., Guschin, D. Y., Lee, Y. L., Rupniewski, I., Beausejour, C. M., Waite, A. J., Wang, N. S., Kim, K. A. et al. (2007) An improved

zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 25, 778–785

164a Lombardo, A., Genovese, P., Beausejour, C. M., Colleoni, S., Lee, Y. L., Kim, K. A., Ando, D., Urnov, F. D., Galli, C., Gregory, P. D. et al. (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 25, 1298–1306

Lentiviral technology

617

 

 

165Malik, P., Arumugam, P. I., Yee, J. K. and Puthenveetil, G. (2005) Successful correction of the human Cooley’s anemia β-thalassemia major phenotype using a lentiviral vector flanked by the chicken hypersensitive site 4 chromatin insulator. Ann. N.Y. Acad. Sci.

1054, 238–249

166Pawliuk, R., Westerman, K. A., Fabry, M. E., Payen, E., Tighe, R., Bouhassira, E. E., Acharya, S. A., Ellis, J., London, I. M., Eaves, C. J. et al. (2001) Correction of sickle cell disease in transgenic mouse models by gene therapy. Science 294, 2368–2371

167May, C., Rivella, S., Callegari, J., Heller, G., Gaensler, K. M., Luzzatto, L. and Sadelain,

M.(2000) Therapeutic haemoglobin synthesis in β-thalassaemic mice expressing lentivirus-encoded human β-globin. Nature 406, 82–86

168Adjali, O., Marodon, G., Steinberg, M., Mongellaz, C., Thomas-Vaslin, V., Jacquet, C., Taylor, N. and Klatzmann, D. (2005) In vivo correction of ZAP-70 immunodeficiency by intrathymic gene transfer. J. Clin. Invest. 115, 2287–2295

169Lo Bianco, C., Schneider, B. L., Bauer, M., Sajadi, A., Brice, A., Iwatsubo, T. and Aebischer, P. (2004) Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an α-synuclein rat model of Parkinson’s disease. Proc. Natl. Acad. Sci. U.S.A. 101, 17510–17515

170Wang, G., Slepushkin, V., Zabner, J., Keshavjee, S., Johnston, J. C., Sauter, S. L., Jolly,

D.J., Dubensky, Jr. T.W., Davidson, B. L. and McCray, Jr, P. B. (1999) Feline immunodeficiency virus vectors persistently transduce nondividing airway epithelia and correct the cystic fibrosis defect. J. Clin. Invest. 104, R55–R62

171Azzouz, M., Le, T., Ralph, G. S., Walmsley, L., Monani, U. R., Lee, D. C., Wilkes, F., Mitrophanous, K. A., Kingsman, S. M., Burghes, A. H. and Mazarakis, N. D. (2004) Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy. J. Clin. Invest. 114, 1726–1731

172Yu, X., Zhan, X., D’Costa, J., Tanavde, V. M., Ye, Z., Peng, T., Malehorn, M. T., Yang, X., Civin, C. I. and Cheng, L. (2003) Lentiviral vectors with two independent internal promoters transfer high-level expression of multiple transgenes to human hematopoietic stem-progenitor cells. Mol. Ther. 7, 827–838

173Amendola, M., Venneri, M. A., Biffi, A., Vigna, E. and Naldini, L. (2005) Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat. Biotechnol. 23, 108–116

174Zhu, Y., Feuer, G., Day, S. L., Wrzesinski, S. and Planelles, V. (2001) Multigene lentiviral vectors based on differential splicing and translational control. Mol. Ther. 4, 375–382

175Licursi, M., Christian, S. L., Pongnopparat, T. and Hirasawa, K. (2011) In vitro and in vivo comparison of viral and cellular internal ribosome entry sites for bicistronic vector expression. Gene Ther. 18, 631–636

176Szymczak, A. L., Workman, C. J., Wang, Y., Vignali, K. M., Dilioglou, S., Vanin, E. F. and Vignali, D. A. (2004) Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat. Biotechnol. 22, 589–594

177Yang, S., Cohen, C. J., Peng, P. D., Zhao, Y., Cassard, L., Yu, Z., Zheng, Z., Jones, S., Restifo, N. P., Rosenberg, S. A. and Morgan, R. A. (2008) Development of optimal bicistronic lentiviral vectors facilitates high-level TCR gene expression and robust tumor cell recognition. Gene Ther. 15, 1411–1423

178Ibrahimi, A., Vande Velde, G., Reumers, V., Toelen, J., Thiry, I., Vandeputte, C., Vets, S., Deroose, C., Bormans, G., Baekelandt, V. et al. (2009) Highly efficient multicistronic lentiviral vectors with peptide 2A sequences. Hum. Gene Ther. 20, 845–860

179Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811

180Hammond, S. M., Bernstein, E., Beach, D. and Hannon, G. J. (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296

181Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J. and Conklin, D. S. (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958

182Stewart, S. A., Dykxhoorn, D. M., Palliser, D., Mizuno, H., Yu, E. Y., An, D. S., Sabatini,

D.M., Chen, I. S., Hahn, W. C., Sharp, P. A. et al. (2003) Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9, 493–501

183Singer, O. and Verma, I. M. (2008) Applications of lentiviral vectors for shRNA delivery and transgenesis. Curr. Gene Ther. 8, 483–488

184Li, M. J., Kim, J., Li, S., Zaia, J., Yee, J. K., Anderson, J., Akkina, R. and Rossi, J. J. (2005) Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy. Mol. Ther. 12, 900–909

185Vandekerckhove, L., Christ, F., Van Maele, B., De Rijck, J., Gijsbers, R., Van den Haute, C., Witvrouw, M. and Debyser, Z. (2006) Transient and stable knockdown of the integrase cofactor LEDGF/p75 reveals its role in the replication cycle of human immunodeficiency virus. J. Virol. 80, 1886–1896

186Raoul, C., Abbas-Terki, T., Bensadoun, J. C., Guillot, S., Haase, G., Szulc, J., Henderson,

C.E. and Aebischer, P. (2005) Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat. Med. 11, 423–428

187Pfeifer, A., Eigenbrod, S., Al-Khadra, S., Hofmann, A., Mitteregger, G., Moser, M., Bertsch, U. and Kretzschmar, H. (2006) Lentivector-mediated RNAi efficiently suppresses prion protein and prolongs survival of scrapie-infected mice. J. Clin. Invest. 116, 3204–3210

188Wilber, A., Hargrove, P. W., Kim, Y. S., Riberdy, J. M., Sankaran, V. G., Papanikolaou, E., Georgomanoli, M., Anagnou, N. P., Orkin, S. H., Nienhuis, A. W. and Persons, D. A. (2011) Therapeutic levels of fetal hemoglobin in erythroid progeny of β-thalassemic CD34 + cells after lentiviral vector-mediated gene transfer. Blood 117, 2817–2826

189Bridge, A. J., Pebernard, S., Ducraux, A., Nicoulaz, A. L. and Iggo, R. (2003) Induction of an interferon response by RNAi vectors in mammalian cells. Nat. Genet. 34, 263–264

190Gentner, B., Schira, G., Giustacchini, A., Amendola, M., Brown, B. D., Ponzoni, M. and Naldini, L. (2009) Stable knockdown of microRNA in vivo by lentiviral vectors. Nat. Methods 6, 63–66

191Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W. and Bujard, H. (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769

192Kafri, T., van Praag, H., Gage, F. H. and Verma, I. M. (2000) Lentiviral vectors: regulated gene expression. Mol. Ther. 1, 516–521

193Vigna, E., Cavalieri, S., Ailles, L., Geuna, M., Loew, R., Bujard, H. and Naldini, L. (2002) Robust and efficient regulation of transgene expression in vivo by improved tetracycline-dependent lentiviral vectors. Mol. Ther. 5, 252–261

194Wiznerowicz, M. and Trono, D. (2003) Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J. Virol. 77, 8957–8961

195Perl, A. K., Zhang, L. and Whitsett, J. A. (2009) Conditional expression of genes in the respiratory epithelium in transgenic mice: cautionary notes and toward building a better mouse trap. Am. J. Respir. Cell Mol. Biol. 40, 1–3

196Morimoto, M. and Kopan, R. (2009) rtTA toxicity limits the usefulness of the SP-C-rtTA transgenic mouse. Dev. Biol. 325, 171–178

197Benabdellah, K., Cobo, M., Munoz, P., Toscano, M. G. and Martin, F. (2011) Development of an all-in-one lentiviral vector system based on the original TetR for the easy generation of Tet-ON cell lines. PLoS ONE 6, e23734

198Pfeifer, A., Ikawa, M., Dayn, Y. and Verma, I. M. (2002) Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc. Natl. Acad. Sci. U.S.A. 99, 2140–2145

199McGrew, M. J., Sherman, A., Ellard, F. M., Lillico, S. G., Gilhooley, H. J., Kingsman, A. J., Mitrophanous, K. A. and Sang, H. (2004) Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Rep. 5, 728–733

200van den Brandt, J., Wang, D., Kwon, S. H., Heinkelein, M. and Reichardt, H. M. (2004) Lentivirally generated eGFP-transgenic rats allow efficient cell tracking in vivo. Genesis 39, 94–99

201Wongsrikeao, P., Saenz, D., Rinkoski, T., Otoi, T. and Poeschla, E. (2011) Antiviral restriction factor transgenesis in the domestic cat. Nat. Methods 8, 853–859

202Lois, C., Hong, E. J., Pease, S., Brown, E. J. and Baltimore, D. (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872

203Hofmann, A., Kessler, B., Ewerling, S., Weppert, M., Vogg, B., Ludwig, H., Stojkovic, M., Boelhauve, M., Brem, G., Wolf, E. and Pfeifer, A. (2003) Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep. 4, 1054–1060

204Tiscornia, G., Singer, O., Ikawa, M. and Verma, I. M. (2003) A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. Natl. Acad. Sci. U.S.A. 100, 1844–1848

205Herold, M. J., van den Brandt, J., Seibler, J. and Reichardt, H. M. (2008) Inducible and reversible gene silencing by stable integration of an shRNA-encoding lentivirus in transgenic rats. Proc. Natl. Acad. Sci. U.S.A. 105, 18507–18512

206Palmowski, M. J., Lopes, L., Ikeda, Y., Salio, M., Cerundolo, V. and Collins, M. K. (2004) Intravenous injection of a lentiviral vector encoding NY-ESO-1 induces an effective CTL response. J. Immunol. 172, 1582–1587

207Esslinger, C., Chapatte, L., Finke, D., Miconnet, I., Guillaume, P., Levy, F. and MacDonald, H. R. (2003) In vivo administration of a lentiviral vaccine targets DCs and induces efficient CD8 + T cell responses. J. Clin. Invest. 111, 1673–1681

208Bobisse, S., Rondina, M., Merlo, A., Tisato, V., Mandruzzato, S., Amendola, M., Naldini, L., Willemsen, R. A., Debets, R., Zanovello, P. and Rosato, A. (2009) Reprogramming T lymphocytes for melanoma adoptive immunotherapy by T-cell receptor gene transfer with lentiviral vectors. Cancer Res. 69, 9385–9394

209Iglesias, M. C., Mollier, K., Beignon, A. S., Souque, P., Adotevi, O., Lemonnier, F. and Charneau, P. (2007) Lentiviral vectors encoding HIV-1 polyepitopes induce broad CTL responses in vivo. Mol. Ther. 15, 1203–1210

210Dai, B., Yang, L., Yang, H., Hu, B., Baltimore, D. and Wang, P. (2009) HIV-1 Gag-specific immunity induced by a lentivector-based vaccine directed to dendritic cells. Proc. Natl. Acad. Sci. U.S.A. 106, 20382–20387

211Lemiale, F., Asefa, B., Ye, D., Chen, C., Korokhov, N. and Humeau, L. (2010) An HIV-based lentiviral vector as HIV vaccine candidate: immunogenic characterization. Vaccine 28, 1952–1961

c The Authors Journal compilation c 2012 Biochemical Society

618

T. Sakuma, M. A. Barry and Y. Ikeda

 

 

212Hu, B., Yang, H., Dai, B., Tai, A. and Wang, P. (2009) Nonintegrating lentiviral vectors can effectively deliver ovalbumin antigen for induction of antitumor immunity. Hum. Gene Ther. 20, 1652–1664

213Yang, H. G., Hu, B. L., Xiao, L. and Wang, P. (2011) Dendritic cell-directed lentivector vaccine induces antigen-specific immune responses against murine melanoma. Cancer Gene Ther. 18, 370–380

214Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. and Yamanaka, S. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872

215Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R. et al. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920

216Ohmine, S., Dietz, A. B., Deeds, M. C., Hartjes, K. A., Miller, D. R., Thatava, T., Sakuma, T., Kudva, Y. C. and Ikeda, Y. (2011) Induced pluripotent stem cells from GMP-grade hematopoietic progenitor cells and mononuclear myeloid cells. Stem Cell Res. Ther. 2, 46

217Thatava, T., Armstrong, A. S., De Lamo, J. G., Edukulla, R., Khan, Y. K., Sakuma, T., Ohmine, S., Sundsbak, J. L., Harris, P. C., Kudva, Y. C. and Ikeda, Y. (2011) Successful disease-specific induced pluripotent stem cell generation from patients with kidney transplantation. Stem Cell Res. Ther. 2, 48

218Papapetrou, E. P. and Sadelain, M. (2011) Generation of transgene-free human induced pluripotent stem cells with an excisable single polycistronic vector. Nat. Protoc. 6, 1251–1273

219Carey, B. W., Markoulaki, S., Hanna, J., Saha, K., Gao, Q., Mitalipova, M. and Jaenisch,

R.(2009) Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc. Natl. Acad. Sci. U.S.A. 106, 157–162

220Subramanyam, D., Lamouille, S., Judson, R. L., Liu, J. Y., Bucay, N., Derynck, R. and Blelloch, R. (2011) Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat. Biotechnol. 29,

443–448

221Huang, P., He, Z., Ji, S., Sun, H., Xiang, D., Liu, C., Hu, Y., Wang, X. and Hui, L. (2011) Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 475, 386–389

222Ieda, M., Fu, J. D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B. G. and Srivastava, D. (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386

223Pfeifer, A., Kessler, T., Yang, M., Baranov, E., Kootstra, N., Cheresh, D. A., Hoffman,

R.M. and Verma, I. M. (2001) Transduction of liver cells by lentiviral vectors: analysis in living animals by fluorescence imaging. Mol. Ther. 3, 319–322

Received 23 January 2012/8 February 2012; accepted 10 February 2012 Published on the Internet 16 April 2012, doi:10.1042/BJ20120146

224Iyer, M., Salazar, F. B., Lewis, X., Zhang, L., Carey, M., Wu, L. and Gambhir, S. S. (2004) Noninvasive imaging of enhanced prostate-specific gene expression using a two-step transcriptional amplification-based lentivirus vector. Mol. Ther. 10, 545–552

225Deroose, C. M., Reumers, V., Gijsbers, R., Bormans, G., Debyser, Z., Mortelmans, L. and Baekelandt, V. (2006) Noninvasive monitoring of long-term lentiviral vector-mediated gene expression in rodent brain with bioluminescence imaging. Mol. Ther. 14, 423–431

226Ray, P., De, A., Min, J. J., Tsien, R. Y. and Gambhir, S. S. (2004) Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res. 64, 1323–1330

227Chen, W., Wu, X., Levasseur, D. N., Liu, H., Lai, L., Kappes, J. C. and Townes, T. M. (2000) Lentiviral vector transduction of hematopoietic stem cells that mediate long-term reconstitution of lethally irradiated mice. Stem Cells 18, 352–359

228Gallo, P., Grimaldi, S., Latronico, M. V., Bonci, D., Pagliuca, A., Gallo, P., Ausoni, S., Peschle, C. and Condorelli, G. (2008) A lentiviral vector with a short troponin-I promoter for tracking cardiomyocyte differentiation of human embryonic stem cells. Gene Ther. 15, 161–170

229Luker, K. E., Mihalko, L. A., Schmidt, B. T., Lewin, S. A., Ray, P., Shcherbo, D., Chudakov, D. M. and Luker, G. D. (2011) In vivo imaging of ligand receptor binding with Gaussia luciferase complementation. Nat. Med. 18, 172–177

230Manilla, P., Rebello, T., Afable, C., Lu, X., Slepushkin, V., Humeau, L. M., Schonely, K., Ni, Y., Binder, G. K., Levine, B. L. et al. (2005) Regulatory considerations for novel gene therapy products: a review of the process leading to the first clinical lentiviral vector.

Hum. Gene Ther. 16, 17–25

231Lu, X., Humeau, L., Slepushkin, V., Binder, G., Yu, Q., Slepushkina, T., Chen, Z., Merling, R., Davis, B., Chang, Y. N. and Dropulic, B. (2004) Safe two-plasmid production for the first clinical lentivirus vector that achieves >99 % transduction in primary cells using a one-step protocol. J. Gene Med. 6, 963–973

232Levine, B. L., Humeau, L. M., Boyer, J., MacGregor, R. R., Rebello, T., Lu, X., Binder, G. K., Slepushkin, V., Lemiale, F., Mascola, J. R. et al. (2006) Gene transfer in humans using a conditionally replicating lentiviral vector. Proc. Natl. Acad. Sci. U.S.A. 103, 17372–17377

233Cartier, N., Hacein-Bey-Abina, S., Bartholomae, C. C., Veres, G., Schmidt, M., Kutschera, I., Vidaud, M., Abel, U., Dal-Cortivo, L., Caccavelli, L. et al. (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326, 818–823

234Bank, A., Dorazio, R. and Leboulch, P. (2005) A phase I/II clinical trial of β-globin gene therapy for β-thalassemia. Ann. N.Y. Acad. Sci. 1054, 308–316

235Cavazzana-Calvo, M., Payen, E., Negre, O., Wang, G., Hehir, K., Fusil, F., Down, J., Denaro, M., Brady, T., Westerman, K. et al. (2010) Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 467, 318–322

c The Authors Journal compilation c 2012 Biochemical Society

Соседние файлы в папке Подготовка у универсиаде 2012