Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
119
Добавлен:
05.06.2015
Размер:
100.62 Кб
Скачать

БИЛЕТ № 33

1 Циклические испытания металлов. Кривая усталости. Предел выносливости. Пути повышения предела выносливости

Многие детали автомобиля (оси, коленчатые валы) работают в условиях действия повторно-переменных или знакопеременных нагрузок. Металл под действием циклических нагрузок может уставать и разрушаться.

Рис.2.5. Вид усталостного излома при циклических испытаниях.

Усталостный излом имеет две зоны: притертая зона с полукольцами от каждого цикла, которые приводят к очагу разрушения (трещине, хрупким включениям оксидов, нитридов, карбидов и т. п.), и зона долома - она всегда шероховатая. Сопротивление металла усталостному разрушению характеризуется пределом выносливости σ-1 - это максимальное напряжение, при действии которого не происходит усталостного разрушения образца после произвольно большого или заданного (базового) числа циклов нагружения. За базу принимают: для стали 5 млн. циклов, для цветных металлов 20 млн. циклов.

σ-1 зависит от:

1) размера детали, чем она крупнее, тем предел выносливости ниже;

2) чистоты поверхности детали, поверхностные надрезы, глубокие царапины, коррозия - резко снижают предел выносливости.

Пути повышения предела выносливости:

Поверхностное упрочнение детали и образование при этом на поверхности сжимающих остаточных напряжений способствуют повышению предела выносливости. Этого можно добиться;

а) поверхностной закалкой ТВЧ;

б) химико-термической обработкой (цементацией, азотировани­ем);

в) дробеструйной обработкой (поверхностный наклёп).

2 Превращение аустенита в мартенсит при охлаждении. Особенности этого превращения. Строение и свойства мартенсита. Влияние углерода и легирующих элементов на температуру МН и МК.

Мартенситное превращение протекает в интервале температур Мнк (рис. 33).

Механизм мартенситного превращения – бездиффузионный. При непрерывном быстром охлаждении аустенита со скоростью выше критической (VКР - критическая скорость закалки – минимальная скорость охлаждения для получения мартенсита) диффузии углерода не происходит, идет только полиморфное γ→α превращение:

Feγ(C)0,8%CFeα(C)0,8%C.

Образуется мартенсит – пересыщенный твёрдый раствор углерода в α-железе.

Кристаллическая решётка мартенсита - тетрагональная (Рис.34), в ней отношение периодов с/а≠1. Чем больше в мартенсите углерода, тем больше степень тетрагональности (с/а).

Рис.34. Кристаллическая решетка мартенсита

Мартенсит – структура закаленной стали, обладает высокой твердостью. Это объясняется искажениями кристаллической решётки, вызванными повышенным содержанием в ней углерода, увеличением плотности дислокаций до 1012см-2. Чем больше в мартенсите углерода, тем выше его твердость. Твердость мартенсита стали с содержанием углерода 0,8% – 63…65 HRC.

Мартенсит имеет игольчатое строение (рис. 35).

Рис. 35. Строение мартенсита: а – схема, б – микроструктура

Основные особенности мартенситного превращения:

  • превращение А→М идет по бездиффузионному механизму;

  • превращение А→М идёт с увеличением объёма , что вызывает значительные остаточные напряжения;

  • мартенситное превращение не идёт до конца, в структуре сохраняется остаточный аустенит (АОСТ).

Количество АОСТ зависит от содержания углерода и легирующих элементов в стали, которые влияют на положение точек начала и конца мартенситного превращения (рис. 36). При содержании углерода более 0,6% МК опускается в область отрицательных температур. Чем больше углерода и легирующих элементов, тем ниже МН и МК и тем больше в структуре остаточного аустенита.

Рис. 36. Влияние содержания углерода (сплошные линии) и легирующих элементов (пунктирные линии) на температуру мартенситных точек МН и МК

3 Улучшаемые стали. Состав, термическая обработка, получаемая структура, назначение.

      1. Улучшаемые стали – среднеуглеродистые,

содержат 0,3…0,5% С. Применяются для деталей, работающих при ударных и циклических нагрузках: коленчатые и карданные валы, валы редукторов, оси, шатуны, шестерни и др.

Основная термообработка: улучшение (закалка + высокий отпуск). Структура: зернистый сорбит, который оптимально сочетает высокую прочность с высокой ударной вязкостью и выносливостью. Для малонагруженных деталей вместо улучшения проводится нормализация. Для деталей, работающих в условиях повышенного износа, после улучшения или нормализации проводят поверхностную закалку ТВЧ или азотирование.

Углеродистые стали 30, 35, 40, 45, 50. Термообработка: улучшение (нормализация), структура сорбит отпуска зернистый (сорбит пластинчатый+феррит). Обладают малой прокаливаемостью, применяются для осей шестерен, фланцев, крепежных деталей.

Легированные стали:

Хромистые: 30Х, 40Х, 40ХФА. Термообработка: улучшение + закалка ТВЧ + низкий отпуск. Структура: на поверхности - МОТП+АОСТ, в сердцевине – СОТП. Применяются для шатунов, валов коробки передач, шатунных болтов, креплений маховика, крепежа и т.д.

Хромомарганцевые 40ХГ, 40ХГТР, хромоникелевые 45ХН, 40ХН2МА. Термообработка: улучшение, структура сорбит отпуска зернистый. Применение: валы, штоки, поршни, шаровые пальцы, шатуны, коленчатые валы.

Хромомарганцевокремниевые (хромансилы): 30ХГС, 35ХГСНА. Термообработка: изотермическая закалка или улучшение. Структура, соответственно, – нижний бейнит или сорбит зернистый. Применяются для шаровых пальцев, рычагов рулевого управления, шатунных болтов, креплений маховика и.т.д.

Хромоалюминиевые (нитраллои): 38Х2МЮА. Термообработка: улучшение+азотирование. Структура: на поверхности – карбонитриды легирующих элементов, в сердцевине – СОТП. Применяются для гильз цилиндров мощных двигателей, плунжеров топливной аппаратуры, игл форсунок.

4 Как изменяется структура и свойства стали 45 и У10 в результате закалки: от температур 750С (>АС1) и 850С (>АС3, >АСm).

Соседние файлы в папке Материаловедение Экзамен