
Архив ZIP - WinRAR (2) / Материаловедение Экзамен / билет 2
.docxБилет 2
Диаграмма состояния железо-углерод
В реальных условиях охлаждения углерод в железоуглеродистых сплавах находится в метастабильной фазе в виде цементита Fe3C. Диаграмма Fe-Fe3C соответствует метастабильному равновесию системы железо-углерод.
Рис. 5.1. Диаграмма состояния железо-цементит (метастабильная)
Основные критические точки и линии диаграммы (рис. 19):
точка А – температура плавления чистого железа 1539°С;
точка D – температура плавления цементита 1250°С;
точка G – 910°С (А3) – температура полиморфного α↔γ превращения железа;
точка N – 1392°С (А4) – температура полиморфного γ↔δ превращения железа;
ABCD – линия ликвидус;
AJECF – линия солидус;
ES – линия переменной растворимости углерода в аустените;
PQ – линия переменной растворимости углерода в феррите;
точка Е – предельная растворимость углерода в аустените (2,14% С);
точка Р – предельная растворимость углерода в феррите (0,02% С);
Явление перестройки кристаллической решетки металлов в зависимости от температуры называют полиморфизмом.
Полиморфное превращение начинает происходить сначала при 910°С, потом при 1392°С.
αFe(ОЦК) 910°С -> γFe(ГЦК) 1392°С -> δFe(ОЦК)
Нормализация
Нормализация
– это нагрев доэвтектоидных сталей на
40…50 °С выше АС3, заэвтектоидных – на
40..50°С выше АСm, выдержка и последующее
охлаждение на спокойном воздухе (Рис.38,
40).
Рис. 40. «Стальной угол» диаграммы состояния Fe-Fe3C с нанесенными температурами нагрева при нормализации
При нагреве происходит полная фазовая перекристаллизация, в результате охлаждения получают высокодисперсные феррито-цементитные смеси. Структуры:
доэвтектоидных сталей - С+Ф,
эвтектоидной – С,
заэвтектоидных – С+ЦII.
После нормализации сталь имеет более высокую прочность, твёрдость, сопротивление хрупкому разрушению, по сравнению с отжигом.
Цель нормализации - устранение крупнозернистой структуры, полученной при предшествующей обработке (литье, горячей прокатке, ковке или штамповке, диффузионном отжиге). Нормализацию применяют:
для низкоуглеродистых сталей - вместо отжига,
для среднеуглеродистых – вместо закалки с высоким отпуском,
для высокоуглеродистых (заэвтектоидных) – для частичного устранения цементитной сетки,
для некоторых легированных сталей – вместо закалки.
Улучшение
Улучшение стали - вид термической обработки стали, заключающийся в закалке и последующем высоком отпуске (при 550—650 °С). В результате улучшения. достигается однородная структура сорбита (сорбит зернистый в отличие от пластинчатого), обеспечивающая хорошее сочетание прочности, пластичности, ударной вязкости и критической температуры перехода из вязкого состояния в хрупкое. Наибольший эффект наблюдается в том случае, если при закалке не образуются немартенситные продукты превращений аустенита (феррит, бейнит). Для предотвращения развития отпускной хрупкости во многих случаях после высокого отпуска необходимо охлаждение в масле или воде. Конкретные режимы улучшения определяются требуемым уровнем её свойств и составом. Иногда улучшение применяется в качестве промежуточной обработки для формирования однородной исходной структуры перед закалкой.
3) Алюминий и его сплавы
Свойства алюминия:
Тпл=660 ºС;
кристаллическая решетка ГЦК (не имеет полиморфного превращения);
низкий удельный вес;
высокая электро- и теплопроводность;
высокая пластичность;
высокая коррозионная стойкость вследствие образования на его поверхности пленки оксида Al2O3;
высокие технологические свойства – легко обрабатывается давлением, хорошо сваривается.
Классификация алюминиевых сплавов:
Деформируемые сплавы:
сплавы, не упрочняемые термической обработкой;
сплавы, упрочняемые термической обработкой.
Литейные сплавы.
Порошковые сплавы.
9.1.1. Деформируемые алюминиевые сплавы, не упрочняемые термообработкой
К этим сплавам относятся сплавы алюминия с марганцем (АМц2), содержащие 1…1,6% Mn, и магнием (АМг2, АМг6), содержащие 2…7%Mg. Структура этих сплавов в равновесном состоянии - твердый раствор легирующих элементов в алюминии. Упрочняют сплавы путем пластической деформации (нагартовки).
Свойства:
легко обрабатываются давлением;
хорошо свариваются;
обладают высокой коррозионной стойкостью;
обработка резанием затруднена.
Применяются эти сплавы для изготовления строительных конструкций (витражи, двери, оконные рамы и т.д.), емкостей для жидкостей (баки для бензина), палубных надстроек речных и морских судов.
9.1.2. Деформируемые алюминиевые сплавы, упрочняемые термообработкой
Дуралюмины (Д1, Д3, Д6, Д16 и т.п.) – сплавы системы Al-Cu. Основным легирующим элементом является медь. Сплав Д1 содержит 3,8…4,8%Cu, 0,5…1,5% магния, ~0,5% марганца. Согласно диаграмме Al-Cu (рис. 9.1.) в сплавах образуются следующие фазы:
α – твердый раствор меди в алюминии, максимальная растворимость Cu в Al составляет 5,7%;
θ –твердый раствор на основе химического соединения СuAl2, содержащего 54,1%Cu.
Структура сплава Д1 в равновесном состоянии (после литья) α + θII, причем частицы θII располагаются по границам зерен и охрупчивают сплав (рис. 9.2. а).
Рис.9.1. Диаграмма состояния Al-Cu.
Маркировка – D1, D6, D16 и др.
D – обозначение дюралюминия, цифра – порядковый номер.
D1 – 3,8 – 4,8% Cu; ≈0,8% Mn; ≈0,8% Mg; ≈0,7% Si
4) Выбор стали
Термообработка: закалка + средний отпуск. Структура - троостит отпуска. Свойства: высокие пределы упругости, текучести и выносливости. Рессорно-пружинные стали должны иметь высокую прокаливаемость, пластичность, вязкость, релаксационную стойкость.
Для пружины диаметром 3 мм подойдут углеродистые стали 55, 60, 65, 70, 75, 80, 85 (У55 и др.) Эти стали имеют низкую релаксационную стойкость.
Для пружины 20 мм - Легированные стали. Основными легирующими элементами в рессорно-пружинных сталях являются кремний (1…3% Si), марганец (~1% Мn), хром (~1%Cr), ванадий (~0,15%V), никель (до 1,7%Ni). Их вводят для повышения прокаливаемости, релаксационной стойкости и выносливости.
Стали, не содержащие кремния, применяются для клапанных пружин (50ХФА, 50ХГФА).