
Архив ZIP - WinRAR (2) / Материаловедение Экзамен / билет 4
.docxБилет 4
1) Диаграммы железо - углерод
Отжиг
Цель отжига – получение равновесной структуры. Это достигается путем медленного охлаждения детали вместе с печью (рис. 38). Структуры сталей после отжига соответствуют равновесной диаграмме состояния (Fe-Fe3C):
доэвтектоидных - П+Ф, эвтектоидной – П, заэвтектоидных – П+ЦII.
Виды отжига:
Рекристаллизационный отжиг проводится для снятия наклёпа. Температура нагрева сталей 650…700°С (Рис.39).
Отжиг для снятия остаточных напряжений (в отливках, сварных соединениях и др.) проводится при температуре 550..650°С.
Диффузионный отжиг (гомогенизация) применяется для легированных сталей с целью устранения химической и структурной неоднородности, Тнагр= 1100..1200°С (Рис.39), выдержка 15..20 часов. После диффузионного отжига формируется крупнозернистая структура (П+Ф).
Полный отжиг проводится для доэвтектоидных
сталей с целью получения мелкозернистой
равновесной структуры с пониженной
твёрдостью и высокой пластичностью и
снятия внутренних напряжений. Полный
отжиг проводится при температуре на
30..50°С
выше
линии АС3 (Рис.39), происходит полная
фазовая перекристаллизация, структура
– П+Ф, мелкозернистая. Полный отжиг
заэвтектоидных сталей не применяется,
так как приводит к образованию структуры
П+ЦII с хрупкой цементитной сеткой.
Неполный отжиг доэвтектоидных сталей проводится при температуре на 10…30°С выше линии АС1 (Рис.39) с целью снизить твёрдость для улучшения обработки резанием. Происходит частичная перекристаллизация. Применяется вместо полного отжига, если не требуется измельчение зерна.
Для заэвтектоидных сталей назначается только неполный отжиг. Он проводится при температуре на 10…30°С выше линии АС1 (Рис.39) с целью получения зернистого перлита. Такой отжиг называется сфероидизирующим.
Изотермический отжиг применяется для легированных сталей и заключается в нагреве выше линии АС3, быстром охлаждении до 620…660°С с последующей изотермической выдержкой в течение 3…6 часов до полного распада аустенита с образованием сорбита пластинчатого. Далее ведут охлаждение на воздухе.
Рис. 39. «Стальной угол» диаграммы состояния Fe-Fe3C с нанесенными температурами нагрева при различных видах отжига
Нормализация
Нормализация – это нагрев доэвтектоидных сталей на 40…50 °С выше АС3, заэвтектоидных – на 40..50°С выше АСm, выдержка и последующее охлаждение на спокойном воздухе (Рис.38, 40).
Рис. 40. «Стальной угол» диаграммы состояния Fe-Fe3C с нанесенными температурами нагрева при нормализации
При нагреве происходит полная фазовая перекристаллизация, в результате охлаждения получают высокодисперсные феррито-цементитные смеси. Структуры:
доэвтектоидных сталей - С+Ф, эвтектоидной – С, заэвтектоидных – С+ЦII.
После нормализации сталь имеет более высокую прочность, твёрдость, сопротивление хрупкому разрушению, по сравнению с отжигом.
Цель нормализации - устранение крупнозернистой структуры, полученной при предшествующей обработке (литье, горячей прокатке, ковке или штамповке, диффузионном отжиге). Нормализацию применяют:
для низкоуглеродистых сталей - вместо отжига,
для среднеуглеродистых – вместо закалки с высоким отпуском,
для высокоуглеродистых (заэвтектоидных) – для частичного устранения цементитной сетки,
для некоторых легированных сталей – вместо закалки.
Закалка
Закалка – нагрев доэвтектоидной стали на 30..50°С выше АС3, заэвтектоидной - на 30..50°С выше АС1, выдержка и последующее охлаждение со скоростью выше критической (Рис. 38, 42). Цель закалки – получение структуры мартенсита.
Структуры сталей после закалки:
доэвтектоидных - М+АОСТ,эвтектоидной - М+АОСТ, заэвтектоидных – М+АОСТ+ЦII.
Рис. 42. «Стальной угол» диаграммы состояния Fe-Fe3C с нанесенными температурами нагрева под закалку
В качестве закалочных сред применяются: вода, водные растворы солей и щелочей, минеральное масло. Охлаждающая среда должна обеспечивать скорость охлаждения стали выше критической в области наименьшей устойчивости аустенита. В диапазоне температур мартенситного превращения скорость охлаждения желательно замедлить, чтобы уменьшить внутренние напряжения, возникающие при переходе аустенита в мартенсит, и предотвратить возникновение закалочных дефектов. Для углеродистых и низколегированных сталей применяют воду и водные растворы NaCl, NaOH. Для легированных сталей применяют минеральное масло.
Закалка, как правило, не является окончательной термообработкой, после нее следует отпуск.
2) Коррозионно-стойкие (нержавеющие) стали
– это стали устойчивые против электрохимической коррозии. Для защиты от электрохимической коррозии в сталь вводят хром в количестве не менее 13%.
Хромоникелевые нержавеющие стали аустенитного класса имеют пониженное содержание углерода (0,04…0,17%С) для предотвращения образования карбидов, содержат 17…19%Cr для защиты от коррозии и 8…12%Ni для стабилизации аустенитной структуры: 12Х18Н8, 08Х18Н10. В равновесном состоянии стали имеют структуру аустенит+карбиды хрома М23С6. Путем закалки от температуры 1100…1150С в воде или на воздухе обеспечивается растворение карбидов и получение однофазной структуры легированного аустенита.
Эти стали не упрочняются термообработкой, повышение прочности достигается наклепом в результате холодной пластической деформации. Хромоникелевые стали обладают высокой пластичностью, коррозионной стойкостью в окислительных и других агрессивных средах, хорошей обрабатываемостью давлением.
Аустенитные хромоникелевые стали склонны к межкристаллитной коррозии (МКК) - коррозии по границам зерен. Это происходит из-за локального выделения карбидов хрома и обеднения хромом пограничных участков аустенита. Чем меньше в стали углерода, тем ниже ее склонность к МКК. Для снижения склонности к МКК в стали вводят титан или ниобий (например, 12Х18Н9Т или 08Х18Н12Б), которые связывают углерод в карбиды TiC или NbC, сохраняя весь хром в твердом растворе.
Аустенитные хромоникелевые стали отличаются широким масштабом применения для различных изделий, работающих в агрессивных средах, в частности, в химической и пищевой промышленности.
3) Медь и ее сплавы
Свойства меди:
Тпл=1083°С,
кристаллическая решетка ГЦК (полиморфных превращений не испытывает),
высокая тепло- и электропроводность;
коррозионная стойкость;
высокая пластичность;
высокие технологические свойства: хорошо обрабатывается давлением, сваривается, легко поддается пайке, полируется.
Различают две основные группы медных сплавов: латуни и бронзы.
Латуни – сплавы меди с цинком. Маркируются буквой Л и числом, показывающим содержание меди (например, латунь Л68 содержит 68% Cu и 32% Zn). В марках многокомпонентных латуней содержатся буквенные обозначения элементов, числа последовательно показывают содержание меди и каждого легирующего элемента. Например, латунь ЛАН59-3-2 содержит 59%Cu, 3%Al, 2%Ni (остальное Zn).
Латуни по структуре делят на две группы:
однофазные со структурой α-твердого раствора, содержат <39%Zn;
двухфазные со структурой α + β', содержат от 39% до 45%Zn.
Однофазные α-латуни (Л96, Л80) обладают пластичностью, хорошо обрабатываются давлением в горячем и холодном состоянии, упрочняются холодной пластической деформацией. Однофазные латуни применяются в виде полос, лент, проволоки, а также в качестве деталей (шайбы, втулки и т.д.).
Двухфазные α+β'-латуни (Л59, Л60) по сравнению с однофазными латунями имеют бόльшую прочность и износостойкость, из них изготавливают втулки, гайки, токопроводящие детали.
Бронзы – это сплавы меди с различными элементами: оловом, алюминием, кремнием, хромом, кадмием, бериллием и др. Маркировка бронз начинается с букв Бр, далее следуют буквенные обозначения легирующих элементов, а затем цифры, показывающие содержание каждого элемента. Например, бронза БрОЦС6-6-3 содержит 6%Sn, 6%Zn, 3%Pb, остальное – медь.
Практическое значение имеют сплавы, содержащие до 10…12%Sn. По содержанию олова бронзы делят на:
деформируемые, с содержанием Sn до 6%;
литейные, с содержанием Sn более 6%.
Деформируемые бронзы (БрО5) имеют однофазную структуру α-твердого раствора. Упрочняются холодной пластической деформацией, применяются в виде прутков, лент и проволоки. В отожженном состоянии они обладают высокими упругими свойствами и сопротивлением усталости, поэтому их используют для изготовления пружин, в электротехнике, химическом машиностроении и др.
Литейные бронзы (БрО10), имеют двухфазную структуру α–твердого раствора с включениями Cu31Sn8, что обеспечивает им высокие антифрикционные свойства. Применяются литейные бронзы для подшипников скольжения ответственного назначения.
4) Упрочнение свинца
Температура начала рекристаллизации : Тн.р.=0, 4 Тпл. T=327 ˚C = 600 К
Температура начала рекристаллизации свинца:
Тп.р.=600*0, 4=240 К=-33° С.
Таким образом, комнатная температура превышает температуру начала рекристаллизации. Свинец подвергся горячей пластической деформации . Деформация называется горячей, если ее проводят при температуре выше температуры рекристаллизации для получения полностью рекристаллизованной структуры. При этих температурах деформация вызывает упрочнение («горячий наклеп») при последующем охлаждении. Но при комнатной температуре он не охладится, поэтому свинец будет упрочняться за счет пластической деформации, если ее выполнять при отрицательных температурах.