
Архив ZIP - WinRAR (2) / Материаловедение Экзамен / БИЛЕТ34
.docxБИЛЕТ № 34
№1 Превращение аустенита в мартенсит при охлаждении. Особенности этого превращения. Строение и свойства мартенсита. Аустенит остаточный (от чего зависит его количество)?
Мартенситное превращение протекает в интервале температур Мн-Мк (рис. 33).
Механизм мартенситного превращения – бездиффузионный. При непрерывном быстром охлаждении аустенита со скоростью выше критической (VКР - критическая скорость закалки – минимальная скорость охлаждения для получения мартенсита) диффузии углерода не происходит, идет только полиморфное γ→α превращение:
Feγ(C)0,8%C→ Feα(C)0,8%C.
Образуется мартенсит – пересыщенный твёрдый раствор углерода в α-железе.
Кристаллическая решётка мартенсита - тетрагональная (Рис.34), в ней отношение периодов с/а≠1. Чем больше в мартенсите углерода, тем больше степень тетрагональности (с/а).
Рис.34. Кристаллическая решетка мартенсита
Мартенсит – структура закаленной стали, обладает высокой твердостью. Это объясняется искажениями кристаллической решётки, вызванными повышенным содержанием в ней углерода, увеличением плотности дислокаций до 1012см-2. Чем больше в мартенсите углерода, тем выше его твердость. Твердость мартенсита стали с содержанием углерода 0,8% – 63…65 HRC.
Мартенсит имеет игольчатое строение (рис. 35).
Рис. 35. Строение мартенсита: а – схема, б – микроструктура
Основные особенности мартенситного превращения:
превращение А→М идет по бездиффузионному механизму;
превращение А→М идёт с увеличением объёма
, что вызывает значительные остаточные напряжения;
мартенситное превращение не идёт до конца, в структуре сохраняется остаточный аустенит (АОСТ).
Количество АОСТ зависит от содержания углерода и легирующих элементов в стали, которые влияют на положение точек начала и конца мартенситного превращения (рис. 36). При содержании углерода более 0,6% МК опускается в область отрицательных температур. Чем больше углерода и легирующих элементов, тем ниже МН и МК и тем больше в структуре остаточного аустенита.
№2 Жаростойкие стали, устойчивые против газовой коррозии при температуре выше 500С.
Их состав, термическая обработка и свойства. Примеры марок сталей, влияние химического состава на жаростойкость.
Жаростойкость (окалиностойкость) – это стойкость металла против газовой коррозии (окисления) при высоких температурах. При температурах выше 550°С железо окисляется с образованием рыхлого оксида FeO. Для повышения жаростойкости стали легируют хромом, а также дополнительно алюминием и кремнием, которые образуют на поверхности металла плотные оксидные пленки Cr2O3, Al2O3, SiO2, обладающие защитными свойствами. Жаростойкость стали, т.е. максимальная температура, при которой сохраняются защитные свойства пленки, не зависит от структуры стали, а определяется, главным образом, содержанием в ней хрома. Введение в сталь 5…8% Cr (15Х5) повышает жаростойкость до 750°С, 15…17% Cr (12Х17) – до 1000°С, 25…30% Cr (15Х25Т) – до 1100°С.
Жаростойкие стали применяют в условиях высоких температур при небольших механических нагрузках (печное оборудование, электро- нагреватели, теплообменники и др.) Жаростойкие стали используются, как правило, без упрочняющей термообработки. Многие жаростойкие стали одновременно являются и коррозионно-стойкими.
№3 Силумины. Их состав, маркировка, способы повышения механических свойств.
№4 Выберите сталь и обоснуйте термическую обработку для шарового пальца. Требуется износостойкость поверхности и вязкость сердцевины. Диаметр шарового пальца 15 мм.
Выберите сталь и обоснуйте термическую обработку для шарового пальца. Требуется износостойкость поверхности и вязкость сердцевины.
30ХГС
Улучшение+зак.ТВЧ+НО
Сердц С отп., поверхность-М
Улучш-е создает наилучш.сочетание прочности и вязкоти.
После зак твч:высок.твердость пов.слоя,износостойкость пов-ти,более мелкое зерно,повышен.сопротивление усталостн.разрушению.