Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
105
Добавлен:
05.06.2015
Размер:
62.12 Кб
Скачать

БИЛЕТ № 34

1 Превращение аустенита в мартенсит при охлаждении. Особенности этого превращения. Строение и свойства мартенсита. Аустенит остаточный (от чего зависит его количество)?

Мартенситное превращение протекает в интервале температур Мнк (рис. 33).

Механизм мартенситного превращения – бездиффузионный. При непрерывном быстром охлаждении аустенита со скоростью выше критической (VКР - критическая скорость закалки – минимальная скорость охлаждения для получения мартенсита) диффузии углерода не происходит, идет только полиморфное γ→α превращение:

Feγ(C)0,8%CFeα(C)0,8%C.

Образуется мартенсит – пересыщенный твёрдый раствор углерода в α-железе.

Кристаллическая решётка мартенсита - тетрагональная (Рис.34), в ней отношение периодов с/а≠1. Чем больше в мартенсите углерода, тем больше степень тетрагональности (с/а).

Рис.34. Кристаллическая решетка мартенсита

Мартенсит – структура закаленной стали, обладает высокой твердостью. Это объясняется искажениями кристаллической решётки, вызванными повышенным содержанием в ней углерода, увеличением плотности дислокаций до 1012см-2. Чем больше в мартенсите углерода, тем выше его твердость. Твердость мартенсита стали с содержанием углерода 0,8% – 63…65 HRC.

Мартенсит имеет игольчатое строение (рис. 35).

Рис. 35. Строение мартенсита: а – схема, б – микроструктура

Основные особенности мартенситного превращения:

  • превращение А→М идет по бездиффузионному механизму;

  • превращение А→М идёт с увеличением объёма , что вызывает значительные остаточные напряжения;

  • мартенситное превращение не идёт до конца, в структуре сохраняется остаточный аустенит (АОСТ).

Количество АОСТ зависит от содержания углерода и легирующих элементов в стали, которые влияют на положение точек начала и конца мартенситного превращения (рис. 36). При содержании углерода более 0,6% МК опускается в область отрицательных температур. Чем больше углерода и легирующих элементов, тем ниже МН и МК и тем больше в структуре остаточного аустенита.

2 Жаростойкие стали, устойчивые против газовой коррозии при температуре выше 500С.

Их состав, термическая обработка и свойства. Примеры марок сталей, влияние химического состава на жаростойкость.

Жаростойкость (окалиностойкость) – это стойкость металла против газовой коррозии (окисления) при высоких температурах. При температурах выше 550°С железо окисляется с образованием рыхлого оксида FeO. Для повышения жаростойкости стали легируют хромом, а также дополнительно алюминием и кремнием, которые образуют на поверхности металла плотные оксидные пленки Cr2O3, Al2O3, SiO2, обладающие защитными свойствами. Жаростойкость стали, т.е. максимальная температура, при которой сохраняются защитные свойства пленки, не зависит от структуры стали, а определяется, главным образом, содержанием в ней хрома. Введение в сталь 5…8% Cr (15Х5) повышает жаростойкость до 750°С, 15…17% Cr (12Х17) – до 1000°С, 25…30% Cr (15Х25Т) – до 1100°С.

Жаростойкие стали применяют в условиях высоких температур при небольших механических нагрузках (печное оборудование, электро- нагреватели, теплообменники и др.) Жаростойкие стали используются, как правило, без упрочняющей термообработки. Многие жаростойкие стали одновременно являются и коррозионно-стойкими.

3 Силумины. Их состав, маркировка, способы повышения механических свойств.

4 Выберите сталь и обоснуйте термическую обработку для шарового пальца. Требуется износостойкость поверхности и вязкость сердцевины. Диаметр шарового пальца 15 мм.

Выберите сталь и обоснуйте термическую обработку для шарового пальца. Требуется износостойкость поверхности и вязкость сердцевины.

30ХГС

Улучшение+зак.ТВЧ+НО

Сердц С отп., поверхность-М

Улучш-е создает наилучш.сочетание прочности и вязкоти.

После зак твч:высок.твердость пов.слоя,износостойкость пов-ти,более мелкое зерно,повышен.сопротивление усталостн.разрушению.

Соседние файлы в папке Материаловедение Экзамен