Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

bdz_5_mp_12

.pdf
Скачиваний:
9
Добавлен:
05.06.2015
Размер:
146.57 Кб
Скачать

12âäú N5

 

 

 

 

нБОЙМПЧ дНЙФТЙК, ЗТХРРБ нр-

1.

чЩЮЙУМЙФШ ЙОФЕЗТБМ Z1

(1 + 5x ¡ x2)e¡xdx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

оБКФЙ РМПЭБДШ, ПЗТБОЙЮЕООХА ЛТЙЧПК x4 ¡ x3 + y2 = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

чЩЮЙУМЙФШ ОЕУПВУФЧЕООЩК ЙОФЕЗТБМ

Z

 

(1 + x2)4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

чЩЮЙУМЙФШ ОЕУПВУФЧЕООЩК ЙОФЕЗТБМ Z1

p

x4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

x2

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.

 

 

 

 

0

 

¡

 

 

 

 

Z

sin ¡xx2¢dx

 

 

 

 

 

 

 

 

 

 

 

 

 

йУУМЕДПЧБФШ УИПДЙНПУФШ ОЕУПВУФЧЕООПЗП ЙОФЕЗТБМБ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2=

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

1

((

1)n + 2)n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ УТБЧОЕОЙС ТСД

 

X

 

¡

¢

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=1 (5 + 4

 

(¡1)n)n

7.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ дБМБНВЕТБ ТСД n=1 n! sinn³2 2n ´

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

8.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ лПЫЙ ТСД n=1

µ

2n

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

n + 1

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

 

 

 

 

 

 

 

X

 

 

 

 

¡

 

 

 

 

 

 

 

 

 

9.

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¡

 

p

 

 

 

 

 

 

 

1

 

 

 

 

 

(¡1)n¡1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¡

 

 

 

 

 

 

 

 

 

 

 

 

 

 

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ ТСД n=5 (n

 

2)

ln(n

 

3)

X

 

¡

 

 

 

 

 

 

 

 

 

 

 

 

 

10. йУУМЕДПЧБФШ ОБ БВУПМАФОХА Й ХУМПЧОХА УИПДЙНПУФШ:

 

 

 

 

 

 

 

n=1 (2n

 

 

1)(2n + 1)(2n + 3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

âäú N5

 

 

 

 

 

 

 

оЙЛПМБЕЧ пМЕЗ, ЗТХРРБ нр-12

 

2

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.

чЩЮЙУМЙФШ ЙОФЕЗТБМ Z

 

x3=2

p

1 + x5=2dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

оБКФЙ РМПЭБДШ, ПЗТБОЙЮЕООХА ЛТЙЧЩНЙ y = xp39=2¡ x2,

 

 

y = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

чЩЮЙУМЙФШ ОЕУПВУФЧЕООЩК ЙОФЕЗТБМ Z

 

1 + x2 dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

(arctg x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

 

 

 

 

 

 

0

2

px¡¡ 1dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

чЩЮЙУМЙФШ ОЕУПВУФЧЕООЩК ЙОФЕЗТБМ Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

Z2

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.

йУУМЕДПЧБФШ УИПДЙНПУФШ ОЕУПВУФЧЕООПЗП ЙОФЕЗТБМБ

x2 + 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

p3 16 ¡ x4 dx

 

 

 

 

 

(n2

 

1)

 

 

6.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

¡

 

 

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ УТБЧОЕОЙС ТСД

 

 

 

arctg p

 

 

 

 

 

 

 

 

 

3(n2 + 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

7.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ дБМБНВЕТБ ТСД

 

1 (n + 1)!

 

 

 

 

 

 

 

 

 

 

nn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ 1

 

 

 

 

 

 

 

 

 

 

8.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ лПЫЙ ТСД n=1

µn n

 

¢

 

21n

 

 

 

 

9.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ ТСД

1

 

 

 

1

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=2

(n + 2) ln2 n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

1 (

 

 

 

 

 

 

¢ 3 ¢ 5 : : : ¢ (2n + 1)

 

 

10. йУУМЕДПЧБФШ ОБ БВУПМАФОХА Й ХУМПЧОХА УИПДЙНПУФШ:

 

¡

1)n+1

1

¢

1

 

 

 

2n

 

n=1

 

 

2

 

4

6 : : :

 

 

(2n + 2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¢ ¢

 

 

 

¢

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12âäú N5

 

 

 

 

 

 

 

 

 

рБОЛТБФПЧ йМШС, ЗТХРРБ нр-

 

 

Zp

 

 

x3e¡x22 dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.

чЩЮЙУМЙФШ ЙОФЕЗТБМ

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¡p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

 

2

ЛТЙЧЩНЙ y = 2x

 

x2 + 3 É y = x2

 

4x + 3

оБКФЙ РМПЭБДШ, ПЗТБОЙЮЕООХА

¡

¡

3.

0

 

 

 

 

+ 4)

 

 

 

 

 

 

 

 

 

чЩЮЙУМЙФШ ОЕУПВУФЧЕООЩК ЙОФЕЗТБМ Z

(x2 + 1)(x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¡1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

чЩЮЙУМЙФШ ОЕУПВУФЧЕООЩК ЙОФЕЗТБМ Z1

ln3 x dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

Z1

 

 

 

 

 

 

 

 

 

 

 

5.

йУУМЕДПЧБФШ УИПДЙНПУФШ ОЕУПВУФЧЕООПЗП ЙОФЕЗТБМБ

p1 ¡ x2

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tg xdx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

2n + cos n

6.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ УТБЧОЕОЙС ТСД

X

 

 

 

 

 

n=1

 

3n + sin n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5n(n + 1)!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

7.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ дБМБНВЕТБ ТСД

X

 

 

 

 

n=1

 

(2n)!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ лПЫЙ ТСД n=1

2n¡1e¡n

 

 

 

 

 

 

 

1

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ ТСД

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¡

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=2 (n2

 

 

3) ln2 n

 

 

 

1 (¡1)n+1 n3n3

 

 

 

 

10. йУУМЕДПЧБФШ ОБ БВУПМАФОХА Й ХУМПЧОХА УИПДЙНПУФШ:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

n=1

12âäú N5

 

 

 

 

 

 

рПМЕФБЕЧ ьНЙМШ, ЗТХРРБ нр-

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.

чЩЮЙУМЙФШ ЙОФЕЗТБМ Z

+ 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

px23x 8x + 15dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

¡

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

оБКФЙ РМПЭБДШ, ПЗТБОЙЮЕООХА ЛТЙЧЩНЙ1 y = ln x É y = ln x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

чЩЮЙУМЙФШ ОЕУПВУФЧЕООЩК ЙОФЕЗТБМ Z

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x2 + 1)(x2 + 4)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¡1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

чЩЮЙУМЙФШ ОЕУПВУФЧЕООЩК ЙОФЕЗТБМ Z=2ln(cos x) sin xdx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

йУУМЕДПЧБФШ УИПДЙНПУФШ ОЕУПВУФЧЕООПЗП ЙОФЕЗТБМБ Z1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sinp

x

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

1

 

arctg n

6.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ УТБЧОЕОЙС ТСД

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=1

 

 

1 + n2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

n!

1

 

7.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ дБМБНВЕТБ ТСД

 

 

 

 

 

 

 

 

tg

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

X

 

 

 

 

 

8.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ лПЫЙ ТСД

nn arctgn

n=3

n

9.

 

1

 

 

 

 

1

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ ТСД n=2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2n

 

 

3) ln(3n + 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

¡

 

 

1 (

¡

1)n

¢

n

¢

 

sin 1

 

 

 

 

 

 

10. йУУМЕДПЧБФШ ОБ БВУПМАФОХА Й ХУМПЧОХА УИПДЙНПУФШ:

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

1 + cos n1

 

X n=1

12âäú N5

 

 

 

 

 

 

тПЪЕОЫФЕКО вПТЙУ, ЗТХРРБ нр-

1.

чЩЮЙУМЙФШ ЙОФЕЗТБМ Z1

x2p

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 ¡ x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

оБКФЙ РМПЭБДШ, ПЗТБОЙЮЕООХА ЛТЙЧЩНЙ y =

1+xp

 

,

y = 0,

 

x = 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

чЩЮЙУМЙФШ ОЕУПВУФЧЕООЩК ЙОФЕЗТБМ Z

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x2 + a)(x2

+ b),

a; b > 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¡1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

x)7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

чЩЮЙУМЙФШ ОЕУПВУФЧЕООЩК ЙОФЕЗТБМ Z

(1 p¡

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.

йУУМЕДПЧБФШ УИПДЙНПУФШ ОЕУПВУФЧЕООПЗП ЙОФЕЗТБМБ Z1pxe¡xdx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

1

1

 

 

 

 

1

 

 

 

6.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ УТБЧОЕОЙС ТСД

 

 

 

 

 

 

 

 

 

 

 

 

tg p

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

n!

 

 

 

 

 

7.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ дБМБНВЕТБ ТСД

1

p

 

 

 

 

 

 

 

 

 

 

 

n=1

2n + 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

X

 

 

 

 

 

8.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n + 2

 

 

 

 

 

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ лПЫЙ ТСД n=1

 

µ3n

¡

1

 

 

 

 

 

9.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ ТСД

1

 

 

 

n2

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=2

(2n3

 

+ n) ln n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

1

 

1)n

 

1

 

 

n

 

10. йУУМЕДПЧБФШ ОБ БВУПМАФОХА Й ХУМПЧОХА УИПДЙНПУФШ: n=1(¡

 

¡

 

µ2n + 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

âäú N5

 

 

 

 

 

уБИОП еЧЗЕОЙС, ЗТХРРБ нр-12

1.

чЩЮЙУМЙФШ ЙОФЕЗТБМ Z3

x3p

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 ¡ x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

0

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

¡

x2

, y = 0, x = 0, x = 1

 

 

 

 

 

оБКФЙ РМПЭБДШ, ПЗТБОЙЮЕООХА ЛТЙЧЩНЙ y =

 

 

 

 

b > a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

чЩЮЙУМЙФШ ОЕУПВУФЧЕООЩК ЙОФЕЗТБМ Z

xpx2 a2 ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

¡

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

чЩЮЙУМЙФШ ОЕУПВУФЧЕООЩК ЙОФЕЗТБМ Z=2ln(sin x) cos x dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

Z1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.

йУУМЕДПЧБФШ УИПДЙНПУФШ ОЕУПВУФЧЕООПЗП ЙОФЕЗТБМБ

xparctg

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

1 + x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¡

 

 

 

 

 

 

¡

 

 

 

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ УТБЧОЕОЙС ТСД

n=2 n

 

 

 

1 arctg p3

1

 

 

 

 

 

 

n

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

1

 

4

 

7 : : : (3n

 

2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

¢

¢n2

 

¡

 

 

 

7.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ дБМБНВЕТБ ТСД

 

 

 

 

 

 

¢

 

 

¢

 

 

 

 

 

 

n=1

7

 

 

9

 

11 : : : (2n + 5)

8.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ лПЫЙ ТСД n=1 µ2n

+

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

2n

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

 

 

 

 

 

 

 

 

X

 

 

¡

 

 

 

 

 

 

 

 

 

 

 

 

 

9.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ ТСД

X

 

 

 

 

 

 

 

 

 

 

1

 

 

 

(

 

1)n

 

1

 

 

 

 

 

 

 

 

 

 

n=1

(3n + 4) ln2(5n + 2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

¡

 

 

¡

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¡

 

 

 

 

 

 

 

 

 

 

 

 

10. йУУМЕДПЧБФШ ОБ БВУПМАФОХА Й ХУМПЧОХА УИПДЙНПУФШ: n=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2n

 

 

1)2(2n + 1)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

âäú N5

 

 

 

 

 

 

 

уПМПДПЧОЙЛПЧ бОДТЕК, ЗТХРРБ

íð-12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

p

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.

чЩЮЙУМЙФШ ЙОФЕЗТБМ Z

(1 +p32

 

x)

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

оБКФЙ РМПЭБДШ, ПЗТБОЙЮЕООХА ЛТЙЧЩНЙ y2 = 6x É x2 + y2 = 16 (НЕОШЫХА РМПЭБДШ)

3.

чЩЮЙУМЙФШ ОЕУПВУФЧЕООЩК ЙОФЕЗТБМ Z

xpx2

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

 

 

 

 

 

 

 

 

53

p5xx

¡

 

 

 

 

 

 

 

 

 

 

 

 

 

 

чЩЮЙУМЙФШ ОЕУПВУФЧЕООЩК ЙОФЕЗТБМ Z

 

6 x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2dx

 

 

 

 

 

 

 

 

 

 

 

 

5.

 

 

 

 

 

 

 

 

2

¡

 

¡

 

 

 

x2 dx

 

 

 

 

 

 

 

йУУМЕДПЧБФШ УИПДЙНПУФШ ОЕУПВУФЧЕООПЗП ЙОФЕЗТБМБ Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

sin x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=2

 

 

 

1

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ УТБЧОЕОЙС ТСД

X

 

 

 

 

 

 

 

¡

 

 

n=1

n2

 

ln n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

nn

 

 

7.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ дБМБНВЕТБ ТСД

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=1

 

(n!)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2n+1

 

 

 

 

 

8.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ лПЫЙ ТСД

X

 

 

 

 

 

 

 

n=1

nn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

n2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ ТСД

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=2

(n3

+ 1) ln n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10. йУУМЕДПЧБФШ ОБ БВУПМАФОХА Й ХУМПЧОХА УИПДЙНПУФШ:

X

 

 

 

 

 

 

 

 

(¡1)n ¢ 2¡n ¢ (n2 + 3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

âäú N5

 

 

 

 

 

 

уХВБЮЕЧ йЗПТШ, ЗТХРРБ нр-12

 

1

p

 

 

+ 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.

чЩЮЙУМЙФШ ЙОФЕЗТБМ Z

x x +px + 2dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

¡

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

оБКФЙ РМПЭБДШ, ПЗТБОЙЮЕООХА ЛТЙЧЩНЙ x2 + y2 = 8 É y = x2 , (ВПМШЫХА

РМПЭБДШ)

3.

чЩЮЙУМЙФШ ОЕУПВУФЧЕООЩК ЙОФЕЗТБМ Z

xpx2 + a2

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

,

 

b > a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

 

 

 

 

 

 

 

b 1

 

 

 

x(1

 

 

x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

чЩЮЙУМЙФШ ОЕУПВУФЧЕООЩК ЙОФЕЗТБМ Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.

 

 

 

 

0

p

 

 

¡

 

 

 

a

xpa2

+ x2

 

 

 

 

 

 

 

 

 

йУУМЕДПЧБФШ УИПДЙНПУФШ ОЕУПВУФЧЕООПЗП ЙОФЕЗТБМБ

Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

1

 

 

 

 

n2 + 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ УТБЧОЕОЙС ТСД

 

 

 

ln

n2 + n + 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2n+1(n3 + 1)

7.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ дБМБНВЕТБ ТСД

 

X

 

 

 

 

 

 

 

 

 

 

n3

 

 

n=1

(n + 1)!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ лПЫЙ ТСД n=1 µ3nn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

X

 

 

 

¡

 

 

 

 

 

9.

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¡

 

 

p

 

 

 

 

1

 

 

(

 

1)n

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¡

 

 

 

 

 

 

 

 

 

 

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ ТСД n=4 (3n

 

 

1)

 

ln(n

 

 

2)

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10. йУУМЕДПЧБФШ ОБ БВУПМАФОХА Й ХУМПЧОХА УИПДЙНПУФШ:

 

 

 

¡

 

 

 

¢

 

 

 

 

 

 

 

 

 

n=1

(n + 1)2

+ 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

âäú N5

 

 

 

хМШСОПЧБ еЛБФЕТЙОБ, ЗТХРРБ

íð-12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=2

2 + 3 sin x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.

чЩЮЙУМЙФШ ЙОФЕЗТБМ Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin x ¡ sin x cos xdx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

оБКФЙ РМПЭБДШ, ПЗТБОЙЮЕООХА ЛТЙЧЩНЙ y = p

 

 

 

 

 

 

y = 0,

 

x = ln 2

 

 

 

 

 

 

ex ¡ 1,

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

чЩЮЙУМЙФШ ОЕУПВУФЧЕООЩК ЙОФЕЗТБМ Z

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1 + x2)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

04

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

чЩЮЙУМЙФШ ОЕУПВУФЧЕООЩК ЙОФЕЗТБМ Z

 

 

 

xdx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p6x

¡

x2

¡

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.

йУУМЕДПЧБФШ УИПДЙНПУФШ ОЕУПВУФЧЕООПЗП ЙОФЕЗТБМБ Z

 

 

 

cos x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sinp5x1+

x3

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

¡

 

1

 

1

 

 

 

 

 

 

6.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ УТБЧОЕОЙС ТСД

p3

 

 

arctg

n + 3

 

 

 

 

 

+ 2

 

 

 

 

n2 + 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

7.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ дБМБНВЕТБ ТСД

 

1 6n(n2

¡

1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=1

 

 

n!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n2

 

1

 

 

 

 

 

 

 

8.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ лПЫЙ ТСД n=1 µ

 

 

¡

 

¢

1

 

 

 

n2

 

2n

9.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ ТСД

1

 

1

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=2

n ln2(3n + 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

1 (

¡

1)n

 

 

 

 

 

 

 

 

 

10. йУУМЕДПЧБФШ ОБ БВУПМАФОХА Й ХУМПЧОХА УИПДЙНПУФШ:

 

 

 

 

 

 

 

 

 

 

n=1 cos n + 2n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12âäú N5

 

 

 

 

жЕДПФПЧБ оБФБМЙС, ЗТХРРБ нр-

1.

0

p125x 4x x2 dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

чЩЮЙУМЙФШ ЙОФЕЗТБМ Z2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ 6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¡

¡

¡

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

оБКФЙ РМПЭБДШ, ПЗТБОЙЮЕООХА ЛТЙЧЩНЙ y = x ¡ x2p

 

É y = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

чЩЮЙУМЙФШ ОЕУПВУФЧЕООЩК ЙОФЕЗТБМ Z

e¡pxdx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

чЩЮЙУМЙФШ ОЕУПВУФЧЕООЩК ЙОФЕЗТБМ Z1

x ln2 xdx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

Z1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.

йУУМЕДПЧБФШ УИПДЙНПУФШ ОЕУПВУФЧЕООПЗП ЙОФЕЗТБМБ

 

 

 

x2 cos xdx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

1

 

 

2n + 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ УТБЧОЕОЙС ТСД

 

 

sin

n2(n + 1)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=1

 

 

 

(n!)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

7.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ дБМБНВЕТБ ТСД

X

 

 

 

 

 

 

 

 

 

 

 

 

 

n3

 

¢

 

 

 

 

n=1 (3n + 1)

 

(2n)!

8.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ У РПНПЭША РТЙЪОБЛБ лПЫЙ ТСД n=1 µ5n + 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

4n 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

¡

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.

йУУМЕДПЧБФШ ОБ УИПДЙНПУФШ ТСД

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

¡

 

 

 

¡

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=3 (3n

 

5) ln2(4n

 

 

7)

 

(¡

 

¡

µ

1 + n3

 

 

 

 

 

 

10. йУУМЕДПЧБФШ ОБ БВУПМАФОХА Й ХУМПЧОХА УИПДЙНПУФШ: n=1

1)n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

1

1 + n2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]