Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вероятность дз / 02 методички / 01Введ_в_Теор.вер_Мет_указ.doc
Скачиваний:
109
Добавлен:
05.06.2015
Размер:
2.68 Mб
Скачать

10 Примеры задач по сложным событиям

Пример 10.1. Турист из пункта А в пункт В может попасть двумя дорогами. Обозначим события: Е1 - турист пошел первой дорогой, Е2 - турист пошел второй дорогой. Из пункта В в пункт С ведут три дороги. Обозначим события: D1 - турист пошел первой дорогой, D2 - турист пошел второй дорогой, D3 - турист пошел третьей дорогой. Если событие F1 - турист от пункта А до пункта В выбрал дорогу наугад, а от пункта В до пункта С пошел третьей дорогой, то F1=(E1+E2)D3. Если событие F2 - турист от пункта А до пункта В пошел не первой дорогой, а от пункта В до пункта С не третьей дорогой, то F2=E2(D1+D2). Если событие F3 - турист дошел от пункта А до пункта С, то F3=(E1+E2) (D1+D2+D3).

Пример 10. 2. Из первых десяти натуральных чисел наугад выбирают одно. Найти вероятность того, что выбранное число четное или кратное пяти.

Пусть событие А - выбранное число четное, событие В - выбранное число кратно пяти. Тогда событие А+В - выбранное число четное или кратно пяти, событие АВ - выбранное число четное и кратно пяти. По классическому определению вероятности Р(А)=0,5 Р(В)=0,2 и Р(АВ)=0,1. Следовательно, по теореме сложения Р(А+В)=0,5+0,2-0,1=0,6.

Заметим, что в этом простом опыте вероятность события А+В можно легко найти непосредственно по классическому определению вероятности, так как: А+В={2; 4; 5; 6; 8; 10} для пространства элементарных событий Ω ={1; 2; 3; 4; 5; 6; 7; 8; 9; 10}.

Пример 10. 3. В ящике содержатся 10 одинаковых по форме и весу шаров. Среди этих шаров 6 белых и 4 черных. Наугад вынимают последовательно два шара. Найти вероятность того, что вынутые шары белые.

Пусть событие А - первый вынутый шар белый; событие В -второй вынутый шар белый. По классическому определению вероятности Р(А)=0,6 Р(В/А)=5/9. Следовательно, Р(АВ)=Р(А)Р(В/А)=1/3.

Пример 10.4. Брошены 3 игральные кости. Найти вероятность выпадения хотя бы одной “шестерки” на верхних гранях костей.

Обозначим событие А - выпала хотя бы одна “шестерка”, тогда событие - не выпало ни одной “шестерки”. По теореме умножения

Р()=(5/6)3. Тогда Р(А)=1-Р()=1-(5/6)3.

Пример 10. 5. Вероятность попадания в цель у первого стрелка 0,8, у второго – 0,9. Стрелки делают по выстрелу. Найти вероятность: а) двойного попадания; б) хотя бы одного попадания; г) одного попадания.

Пусть А – попадание первого стрелка, Р(А)=0,8;

В – попадание второго стрелка, Р(В)=0,9.

Тогда - промах первого,;

- промах второго, .

Найдем нужные вероятности.

а) АВ – двойное попадание, Р(АВ)=Р(А)Р(В)=0,72.

б) - двойной промах,.

в) А+В – хотя бы одно попадание,

.

г) - одно попадание,

.

Пример 10. 6. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8. Найти вероятности того, что формула содержится 1) только в одном справочнике; 2) только в двух справочниках; 3) во всех трех справочниках.

А – формула содержится в первом справочнике;

В – формула содержится во втором справочнике;

С – формула содержится в третьем справочнике.

Воспользуемся теоремами сложения и умножения вероятностей.

1.

=0,6·0,3·0,2+0,4·0,7·0,2+0,4·0,3·0,8=0,188.

2. .

3. P(АВС)=0,6·0,7·0,8=0,336.