- •Введение в Теорию вероятностей
- •1 Опыт, явление, событие
- •2 Классическая вероятность. Вероятности событий в опытах с конечным числом исходов
- •3 Примеры задач по классической вероятности.
- •4 Условия задач типового расчета по теме классическая вероятность
- •5 Параметры для задач по классической вероятности
- •6 Геометрические вероятности
- •7 Условия задач расчета по теме геометрические вероятности
- •8 Параметры к задачам по геометрической вероятности
- •10 Примеры задач по сложным событиям
- •11 Условия задач расчета по теме сложные события
- •12 Параметры к задачам по теме сложные события
- •13 Формула полной вероятности
- •14 Примеры задач по формуле полной вероятности.
- •15 Условия задач типового расчета по теме формула полной вероятности
- •16 Параметры к задачам по формуле полной вероятности
- •17 Формула Байеса
- •18 Примеры задач по формуле Байеса
- •20 Параметры к задачам по формуле Байеса
- •21 Испытания Бернулли. Формула Бернулли
- •22 Примеры испытаний Бернулли и формулы Бернулли
- •23 Задачи на применение формулы Бернулли
- •24 Параметры к задачам по формуле Бернулли
- •25 Асимптотические формулы для формулы Бернулли
- •25.1 Формула Пуассона
- •25.2 Локальная и интегральная формулы Муавра-Лапласа
- •26 Условия задач типового расчета по теме предельные теоремы в схеме Бернулли
- •Нормированное нормальное распределение
- •Значения экспоненциальной функции ex
6 Геометрические вероятности
Существуют эксперименты, исходы которых нельзя описать с помощью конечных пространств элементарных событий. В этих случаях иногда бывает полезным понятие геометрической вероятности.
Пусть между множеством элементарных исходов случайного эксперимента и множеством точек некоторой прямой или плоскости, или пространства, имеющим конечную меру m(S) можно установить взаимно-однозначное соответствие, а также можно установить взаимно-однозначное соответствие между множеством элементарных исходов, благоприятствующих событию А, и подмножеством S, имеющим конечную меру m(s). Под мерой множества понимается длина, площадь и объем соответственно.
Тогда вероятность Р(А) события А определяется равенством:
(6.1)
и называется геометрической вероятностью. Формулу (6.1) часто записывают в виде
,
(6.2)
подразумевая отождествление А и Ω с s и S, соответственно.
Этот метод вычисления вероятности применяется тогда, когда по условиям эксперимента вероятность появления элементарного события (точки пространства Ω) во множестве А пропорциональна мере множества А и не зависит от его расположения в пространстве Ω. В таком случае говорят, что случайная точка имеет равномерное распределение в пространстве Ω.
Пример 6.1. На окружности единичного радиуса случайным образом появляются три точки А, В и С. Найти вероятность того, что треугольник АВС остроугольный.
Б
удем
измерять длины дуг единичной окружности
между точками в таком направлении, чтобы
при движении по окружности за точкой А
следовала точка В, а за точкой В - точка
С. Обозначим черезх
- длину дуги АВ, через у
-
длину дуги ВС. Тогда различным исходам
рассматриваемого эксперимента можно
сопоставить точки плоскости ХОY с
координатами х
и у,
удовлетворяющими неравенствам
то
есть,
.
Если событие S - треугольникАВС
остроугольный, то
.
Очевидно,
площадь области
равна 2
2,
а площадь области S равна
.
Следовательно, вероятность
.
Пример 6.2. Два человека обедают в столовой, которая открыта с 12 до 13 часов. Каждый из них приходит в произвольный момент времени и обедает в течение 10 минут. Какова вероятность их встречи?
Пусть
x
— время прихода первого в столовую, а
y
— время прихода второго
.

Если первый пришел не позже второго (y ³ x), то встреча произойдет при условии 0 £ y - x £ 1/6 (10 мин.- это 1/6 часа).

Между множеством исходов, благоприятствующих встрече, и множеством точек области s, изображенной на рисунке в заштрихованном виде, можно установить взаимно-однозначное соответствие.
Искомая вероятность p равна отношению площади области s к площади всего квадрата.. Площадь квадрата равна единице, а площадь области s можно определить как разность единицы и суммарной площади двух треугольников, изображенных на. Отсюда следует:
.
