Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

NRL_FORMULARY_09-1

.pdf
Скачиваний:
6
Добавлен:
05.06.2015
Размер:
482.71 Кб
Скачать

COLLISIONS AND TRANSPORT

Temperatures are in eV; the corresponding value of Boltzmann’s constant is k = 1.60 × 1012 erg/eV; masses µ, µare in units of the proton mass; eα = Zα e is the charge of species α. All other units are cgs except where noted.

Relaxation Rates

Rates are associated with four relaxation processes arising from the interaction of test particles (labeled α) streaming with velocity vα through a background of field particles (labeled β):

slowing down

dvα

 

= −νsα\β vα

 

 

 

dt

 

 

 

transverse di usion

d

(vα

α)2

= να\β vα

2

 

dt

 

parallel di usion

d

(vα

α)k2

= νkα\β vα

2

 

dt

 

 

energy loss

d

vα

2 = −νǫα\β vα

2,

 

 

 

 

 

dt

 

 

where vα = |vα | and the averages are performed over an ensemble of test particles and a Maxwellian field particle distribution. The exact formulas may be written19

 

νsα\β = (1 + mα/mβ )ψ(xα\β )ν0α\β ;

 

 

 

 

να\β = 2 (1 1/2xα\β )ψ(xα\β ) + ψ(xα\β ) ν0α\β

;

 

 

α

β

α

β

 

α

β

α

β

 

 

 

 

 

ν

\

 

= ψ(x \

 

 

)/x

\

 

ν0

\

 

;

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α β

 

 

 

α β

α β

 

 

 

α

β

 

 

 

 

 

 

 

 

 

 

 

 

 

 

νǫ \

 

= 2 (mα/mβ )ψ(x \ ) − ψ(x \ ) ν0 \ ,

 

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ν

α\β = 4πeα 2eβ 2λαβ nβ /mα 2vα 3;

 

xα\β = mβ vα 2/2kTβ ;

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

Z0

x

 

 

 

 

 

 

 

 

 

 

 

 

dt t1/2e−t

; ψ(x) =

 

 

 

 

 

ψ(x) =

 

 

 

,

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

π

 

and λαβ = ln Λαβ is the Coulomb logarithm (see below). Limiting forms of νs, ν and νk are given in the following table. All the expressions shown

31

have units cm3 sec1. Test particle energy ǫ and field particle temperature T are both in eV; µ = mi/mp where mp is the proton mass; Z is ion charge state; in electron–electron and ion–ion encounters, field particle quantities are distinguished by a prime. The two expressions given below for each rate hold

for very slow (xα\β 1) and very fast (xα\β 1) test particles, respectively.

 

 

 

 

 

Slow

 

 

 

 

 

 

 

 

 

 

 

 

Fast

 

 

 

Electron–electron

 

 

 

 

 

 

 

 

 

 

 

 

−→ 7.7 × 106ǫ3/2

 

 

 

νse|e/neλee

5.8 × 106T 3/2

 

 

 

 

 

 

 

 

 

νe|e/neλee

5.8 × 106T 1/2ǫ1

 

 

−→ 7.7 × 106ǫ3/2

 

 

 

νke|e/neλee

2.9 × 106T 1/2ǫ1

 

 

−→ 3.9 × 106T ǫ5/2

 

 

 

Electron–ion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

νse|i/ni Z2λei

0.23µ3/2T 3/2

 

 

 

 

 

 

 

−→ 3.9 × 106ǫ3/2

 

 

 

νe|i/ni Z2λei

2.5 × 104µ1/2T 1/2ǫ1−→ 7.7 × 106ǫ3/2

 

 

 

νke|i/ni Z2λei

1.2 × 104µ1/2T 1/2ǫ1−→ 2.1 × 109µ1T ǫ5/2

Ion–electron

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

νsi|e/ne Z2λie

1.6 × 109µ1T 3/2

 

 

−→ 1.7 × 104µ1/2ǫ3/2

νi|e/ne Z2λie

3.2 × 109µ1T 1/2ǫ1 −→ 1.8 × 107µ1/2ǫ3/2

νki|e/ne Z2λie

1.6 × 109µ1T 1/2ǫ1 −→ 1.7 × 104µ1/2T ǫ5/2

Ion–ion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

νi|i

λii

6.8 × 10

 

 

µ1/2

 

 

 

 

 

µ

 

1/2

T

1

 

1 µ1/2

 

niZ2Z2

 

 

 

 

µ

 

1 +

µ

 

 

 

 

 

 

s

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3/2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−→ 9.0 × 108

 

+

 

 

 

 

 

 

νi|i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

µ

µ

ǫ3/2

 

 

 

 

7

 

 

1/2

 

 

1

 

1/2

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

i

Z2Z2

λ

1.4 × 10

 

µ

 

 

µ

 

 

T

 

 

 

ǫ

 

 

 

 

 

 

 

 

 

 

 

 

ii

 

 

 

 

 

 

 

 

 

 

 

 

 

−→ 1.8 × 107µ1/2ǫ3/2

 

 

 

νi|i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n Z2Z2

λ

6.8 × 10

8

µ

1/2

µ

1

T

1/2

ǫ

1

 

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

ii

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−→ 9.0 × 108µ1/2µ′−1T ǫ5/2

In the same limits, the energy transfer rate follows from the identity

νǫ = 2νs − ν − νk,

except for the case of fast electrons or fast ions scattered by ions, where the leading terms cancel. Then the appropriate forms are

νǫe|i −→ 4.2 × 109ni Z2λei

ǫ3/2µ1 8.9 × 104(µ/T )1/2ǫ1 exp(1836µǫ/T ) sec1

32

and

νǫi|i′ −→ 1.8 × 107niZ2Z2λii

ǫ3/2µ1/21.1[(µ + µ)/µµ](µ/T )1/2ǫ1 exp(−µǫ/µT ) sec1.

In general, the energy transfer rate νǫα\β is positive for ǫ > ǫα * and negative for ǫ < ǫα*, where x* = (mβ /mα)ǫα */Tβ is the solution of ψ(x*) = (mα|mβ )ψ(x*). The ratio ǫα */Tβ is given for a number of specific α, β in the following table:

 

α\β

i|e e|e, i|i

e|p

e|D

e|T, e|He3

e|He4

 

 

 

ǫα *

1.5 0.98 4.8 × 103

2.6 × 103

1.8 × 103

1.4 × 103

 

 

 

Tβ

 

 

 

 

When both species are near Maxwellian, with Ti < Te , there are just

two characteristic collision rates. For Z = 1,

 

 

 

νe = 2.9 × 106nλTe3/2 sec1;

νi = 4.8 × 108nλTi3/2µ1/2 sec1.

Temperature Isotropization

Isotropization is described by

 

 

 

dT

 

1 dT

k

α

 

 

 

 

 

 

 

=

 

 

 

 

 

= −νT (T − Tk),

 

 

 

 

 

dt

2 dt

 

 

where, if A ≡ T /Tk 1 > 0,

 

 

 

 

 

 

 

 

 

 

 

2

πeα 2eβ 2nα λαβ

 

 

 

 

tan1(A1/2)

νTα =

 

 

 

 

 

A2

3 + (A + 3)

 

 

.

mα1/2(kTk)3/2

 

 

 

A1/2

 

If A < 0, tan1(A1/2)/A1/2 is replaced by tanh1(−A)1/2

/(−A)1/2. For

T ≈ Tk ≡ T ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

νTe = 8.2 × 107nλT 3/2 sec1;

νTi = 1.9 × 108nλZ2µ1/2T 3/2 sec1.

33

Thermal Equilibration

If the components of a plasma have di erent temperatures, but no relative drift, equilibration is described by

 

 

dTα

 

X

 

 

 

 

 

dt

=

ν¯ǫα\β (Tβ − Tα),

 

 

 

 

 

 

 

β

 

 

 

where

 

19 (mα mβ )1/2Zα 2Zβ 2nβ λαβ

 

 

 

α\β

 

 

1

 

ν¯ǫ

= 1.8 × 10

 

(mα Tβ + mβ Tα)3/2

sec

 

.

For electrons and ions with Te ≈ Ti ≡ T , this implies

ν¯ǫe|i/ni = ν¯ǫi|e/ne = 3.2 × 109Z2λ/µT 3/2cm3 sec1.

Coulomb Logarithm

For test particles of mass mα and charge eα = Zαe scattering o field particles of mass mβ and charge eβ = Zβ e, the Coulomb logarithm is defined

as λ = ln Λ ln(rmax/rmin). Here rmin is the larger of eα eβ /mαβ u¯2 and h/¯ 2mαβ u¯, averaged over both particle velocity distributions, where mαβ =

mαmβ /(mα + mβ ) and u = vα vβ ; rmax = (4π

nγ eγ 2/kTγ )1/2, where

the summation extends over all species

γ for

which u¯2 < v

2 = kT

γ

/m

γ

. If

 

P

T γ

 

 

 

this inequality cannot be satisfied, or if either ¯ 1 < rmax or ¯ 1 < rmax, the theory breaks down. Typically λ ≈ 10–20. Corrections to the trans-

port coe cients are O(λ1); hence the theory is good only to 10% and fails

when λ 1.

The following cases are of particular interest:

(a) Thermal electron–electron collisions

λee = 23.5 ln(ne

1/2Te 5/4) [105 + (ln Te 2)2/16]1/2

(b) Electron–ion collisions

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

λei = λie = 23

 

ln

ne

1/2ZTe3/2 ,

 

 

Time /mi < Te < 10Z2 eV;

 

 

 

1/2

 

 

1

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

1/2

 

Te

 

3

 

 

 

 

Time /mi < 10Z eV < Te

= 24 ln ne

 

 

 

 

 

,

 

µ

 

 

= 30 ln ni

 

 

Ti

 

/2

Z

, Te < TiZme/mi .

 

 

 

 

 

 

 

 

 

 

 

 

2

 

1

 

 

 

 

 

 

 

 

 

(c) Mixed ion–ion collisions

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

λii= λii = 23 ln

ZZ(µ + µ)

 

ni Z2

 

n

Z

2

 

1/2

.

 

 

 

 

+

 

i

 

 

µTi+ µTi

Ti

 

Ti

 

 

34

(d) Counterstreaming ions (relative velocity vD = βD c) in the presence of

warm electrons, kT

/m

, kT

i

/m

i

< v

2 < kT

/m

e

 

 

 

 

 

i

 

i

 

 

 

 

D

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ZZ(µ + µ)

 

 

ne

 

1/2

 

λii= λii = 35 ln

 

 

 

 

 

 

 

.

µµβD 2

 

Te

 

Fokker-Planck Equation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Df α

∂f α

+ v · f α

+ F · V f α =

∂f α

coll ,

 

Dt

∂t

 

∂t

where F is an external force field. The general form of the collision integral is

(∂f α /∂t)coll = Pβ V · Jα\β , with

 

 

 

 

 

Jα\β = 2πλαβ

eα 2eβ

2

Z d3v(u2I uu)u3

 

 

 

 

 

mα

 

 

 

 

 

 

 

 

1

 

β

1

 

 

 

 

 

· n

 

f α (v) Vf

(v)

 

f

β (v) V f α (v)o

 

 

 

mβ

 

mα

(Landau form) where u = vv

 

e

2e

2

nf α (v

Jα\β = 4πλαβ

 

α β

 

 

mα 2

 

and I is the unit dyad, or alternatively,

 

1

 

 

 

) VH(v)

2

V

· f α (v) V V G(v)

o ,

where the Rosenbluth potentials are

Z

G(v) = f β (v)ud3v

 

mα

 

Z f β (v)u1d3v.

H(v) = 1 +

mβ

 

If species α is a weak beam (number and energy density small compared with background) streaming through a Maxwellian plasma, then

Jα\β

=

 

mα

 

νsα\β vf α

1

νkα\β vv · V f

α

mα + mβ

2

 

 

1

να\β

v2I vv · V f α.

 

 

 

 

 

4

 

35

B-G-K Collision Operator

For distribution functions with no large gradients in velocity space, the Fokker-Planck collision terms can be approximated according to

Dfe

 

¯

Dt

= νee(Fe − fe ) + νei(Fe − fe );

 

Dfi

¯

 

Dt

= νie (Fi − fi) + νii (Fi − fi ).

The respective slowing-down rates νsα\β given in the Relaxation Rate section above can be used for ναβ , assuming slow ions and fast electrons, with ǫ replaced by Tα. (For νee and νii, one can equally well use ν , and the result is insensitive to whether the slowor fast-test-particle limit is employed.) The

¯

 

 

 

 

 

Maxwellians Fα and Fα are given by

 

io ;

Fα = nα

2πkTα

exp nh

2kTα

 

mα

 

3/2

mα (v vα)2

 

Fα = nα

2πkT¯α

exp nh

2kT¯α

io ,

¯

mα

3/2

mα (v α)2

 

where nα , vα and Tα are the number density, mean drift velocity, and e ective temperature obtained by taking moments of fα. Some latitude in the definition

¯

20

¯

¯

of Tα and v¯α is possible;

 

one choice is Te = Ti, Ti = Te, v¯e = vi, v¯i = ve .

Transport Coe cients

Transport equations for a multispecies plasma:

 

 

 

 

 

 

 

 

dαnα

+ nα · vα = 0;

 

 

 

 

 

 

 

 

dt

 

 

 

dαv

α

 

 

 

1

vα × Bi + Rα ;

mα nα

 

 

= − pα − · Pα + Zα enα hE +

 

dt

 

c

3

nα

dα kTα

+ pα · vα = − · qα Pα : vα + Qα .

 

2

 

 

dt

Here dα/dt ≡ ∂/∂t + vα · ;Ppα = nα kTα , where k is Boltzmann’s constant;

P

Rα = β Rαβ and Qα = β Qαβ , where Rαβ and Qαβ are respectively

the momentum and energy gained by the αth species through collisions with the βth; Pα is the stress tensor; and qα is the heat flow.

36

The transport coe cients in a simple two-component plasma (electrons and singly charged ions) are tabulated below. Here k and refer to the direction of the magnetic field B = bB; u = ve vi is the relative streaming

velocity; ne = ni ≡ n; j = −neu is the current; ωce = 1.76 × 107B sec1 and ωci = (me/mi)ωce are the electron and ion gyrofrequencies, respectively; and

the basic collisional times are taken to be

 

 

3

 

 

 

 

 

(kTe )3/2

 

 

 

 

 

 

5 Te 3/2

 

 

 

 

 

 

 

 

τe =

me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 3.44 × 10

 

 

 

 

 

 

 

sec,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

4 2π nλe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where λ is the Coulomb logarithm, and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

(kTi)3/2

 

 

 

 

 

 

 

 

 

 

7 Ti 3/2

 

 

 

 

 

 

 

 

 

 

mi

 

 

 

 

 

 

 

 

 

1/2

 

 

 

 

 

 

 

 

τi =

 

 

 

 

 

 

= 2.09 × 10

 

 

 

 

µ

 

 

 

sec.

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

πn λe4

 

 

 

 

 

 

 

 

 

In the limit of large fields (ωτα 1, α = i, e) the transport processes may

 

be summarized as follows:21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

momentum transfer

 

Rei = Rie R = RU + RT ;

 

 

 

 

 

 

 

 

 

 

 

frictional force

 

RU = ne(jkk + j );

 

 

 

 

 

 

 

 

 

 

 

electrical

 

σk = 1.96σ ;

σ = ne2τe /me;

 

 

 

 

 

 

 

 

conductivities

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

thermal force

 

RT = 0.71n k(kTe )

 

3n

 

 

b × (kTe );

 

 

 

 

 

 

 

 

2ωce τe

 

ion heating

 

Qi

=

3me nk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Te

− Ti );

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mi

τe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

electron heating

 

Qe

= −Qi R · u;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ion heat flux

 

qi

= −κki k(kTi) − κi (kTi) + κi b × (kTi );

 

 

 

 

κki

 

 

 

nkTiτi

 

κi

 

 

 

2nkTi

 

; κi

 

5nkTi

 

ion thermal

 

= 3.9

 

 

 

 

 

;

=

 

 

 

 

 

=

 

 

;

 

 

 

 

mi

 

 

 

miω

2τi

2miωci

 

conductivities

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ci

 

 

 

 

 

 

 

 

electron heat flux

 

qe

 

 

e

 

 

 

 

e

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= qU

+ qT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

3nkTe

 

 

 

 

 

 

 

 

 

 

 

frictional heat flux

 

qU

= 0.71nkTe uk +

 

b × u ;

 

 

 

 

 

 

2ωce τe

 

 

 

 

 

thermal gradient

 

qTe

= −κke k(kTe ) − κe (kTe ) − κe b × (kTe );

 

heat flux

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

κke

 

 

 

nkTe

τe

 

κe

 

 

 

 

 

 

 

nkTe

κe =

5nkTe

 

electron thermal

 

= 3.2

 

 

 

 

 

 

;

 

= 4.7

 

;

 

;

 

 

 

 

me

 

 

 

meω 2τe

2me ωce

conductivities

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ce

 

 

 

 

 

37

stress tensor (either

Pxx=

η0

(Wxx

+ Wyy )

 

η1

 

(Wxx

− Wyy ) − η3Wxy ;

 

2

2

 

species)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pyy =

η0

(Wxx

+ Wyy ) +

 

η1

 

(Wxx

− Wyy ) + η3Wxy ;

 

 

2

2

 

 

Pxy = Pyx = −η1Wxy +

η3

(Wxx − Wyy );

 

 

 

 

 

 

2

 

 

 

 

 

 

Pxz = Pzx = −η2Wxz − η4Wyz ;

 

 

 

 

 

 

 

 

 

Pyz = Pzy = −η2Wyz + η4Wxz ;

 

 

 

 

 

 

 

 

 

Pzz = −η0Wzz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(here the z axis is defined parallel to B);

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ion viscosity

ηi

= 0.96nkTi τi ;

 

ηi =

 

 

3nkTi

;

ηi

=

 

6nkTi

;

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

10ω

 

2τi

 

2

 

 

5ω 2τi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nkTi

 

 

 

 

 

 

 

nkTi

 

 

 

 

ci

 

 

 

 

ci

 

ηi

=

; ηi

=

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

4

 

 

 

 

ωci

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2ωci

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

electron viscosity

ηe

= 0.73nkTe τe;

 

 

ηe = 0.51

nkTe

;

ηe

= 2.0

nkTe

;

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

ω 2

τe

 

2

 

 

ω 2τe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nkTe

 

 

 

 

 

nkTe

 

ce

 

 

 

 

 

 

ce

 

η3e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

; η4e

=

 

 

.

 

 

 

 

 

 

 

 

 

2ωce

 

ωce

 

 

 

 

 

 

 

 

For both species the rate-of-strain tensor is defined as

 

 

 

 

 

 

 

 

 

 

 

 

Wjk =

∂vj

+

∂vk

2

δjk · v.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂xk

∂xj

3

 

 

 

 

 

 

 

 

 

 

 

When B = 0 the following simplifications occur:

RU = nejk; RT = 0.71n (kTe ); qi = −κik (kTi);

e

= 0.71nkTe u;

e

e

(kTe); Pjk = −η0Wjk .

qU

qT

= −κk

For ωce τe 1 ωciτi , the electrons obey the high-field expressions and the ions obey the zero-field expressions.

Collisional transport theory is applicable when (1) macroscopic time rates of change satisfy d/dt 1, where τ is the longest collisional time scale, and (in the absence of a magnetic field) (2) macroscopic length scales L satisfy L

l, where l = ¯ is the mean free path. In a strong field, ωce τ 1, condition

(2) is replaced by Lk l and L lre (L re in a uniform field), where Lk is a macroscopic scale parallel to the field B and L is the smaller of B/| B| and the transverse plasma dimension. In addition, the standard transport coe cients are valid only when (3) the Coulomb logarithm satisfies

λ 1; (4) the electron gyroradius satisfies re λD , or 8πneme c2 B2; (5) relative drifts u = vα vβ between two species are small compared with the

38

thermal velocities, i.e., u2 kTα /mα , kTβ /mβ ; and (6) anomalous transport processes owing to microinstabilities are negligible.

Weakly Ionized Plasmas

Collision frequency for scattering of charged particles of species α by

neutrals is

να = n0σsα|0(kTα /mα)1/2,

where n0 is the neutral density, σsα\0 is the cross section, typically 5×1015

cm2 and weakly dependent on temperature, and (T0/m0)1/2 < (Tα/mα )1/2 where T0 and m0 are the temperature and mass of the neutrals.

When the system is small compared with a Debye length, L λD , the charged particle di usion coe cients are

Dα = kTα /mανα ,

In the opposite limit, both species di use at the ambipolar rate

DA =

µiDe − µeDi

=

(Ti + Te)DiDe

,

 

 

 

µi − µe

 

TiDe + Te Di

where µα = eα /mανα is the mobility.

The conductivity σα satisfies σα =

nα eα µα.

 

 

 

 

 

In the presence of a magnetic field B the scalars µ and σ become tensors,

Jα = σα · E = σkα Ek + σα E + σα E × b,

where b = B/B and

σkα = nαeα 2/mανα;

σα = σkα να2/(να2 + ω2 );

σα = σkα ναω/(να2 + ω2 ).

Here σ and σ are the Pedersen and Hall conductivities, respectively.

39

APPROXIMATE MAGNITUDES

IN SOME TYPICAL PLASMAS

Plasma Type

n cm3

T eV

ωpe sec1

λD cm

D 3

νei sec1

 

 

 

 

 

 

 

 

 

 

Interstellar gas

1

1

6

× 104

7

× 102

4 × 108

7

× 105

Gaseous nebula

103

1

2

× 106

 

20

8 × 106

6

× 102

Solar Corona

109

102

2

× 109

2

× 101

8 × 106

 

60

Di use hot plasma

1012

102

6

× 1010

7

× 103

4 × 105

 

40

Solar atmosphere,

1014

1

6

× 1011

7

× 105

40

2

× 109

gas discharge

 

 

 

 

 

 

 

 

 

Warm plasma

1014

10

6

× 1011

2

× 104

8 × 102

 

107

Hot plasma

1014

102

6

× 1011

7

× 104

4 × 104

4

× 106

Thermonuclear

1015

104

2

× 1012

2

× 103

8 × 106

5

× 104

plasma

 

 

 

 

 

 

 

 

 

Theta pinch

1016

102

6

× 1012

7

× 105

4 × 103

3

× 108

Dense hot plasma

1018

102

6

× 1013

7

× 106

4 × 102

2 × 1010

Laser Plasma

1020

102

6

× 1014

7

× 107

40

2 × 1012

The diagram (facing) gives comparable information in graphical form.22

40

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]