NRL_FORMULARY_09-1
.pdf
|
|
|
|
|
|
Dimensions |
|
|
|
|
|
|
||||||||||||
Physical |
Sym- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SI |
Conversion |
Gaussian |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
Quantity |
bol |
|
SI |
Gaussian |
Units |
|
|
Factor |
Units |
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Force |
F |
|
ml |
|
ml |
newton |
105 |
dyne |
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
t2 |
|
t2 |
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
Frequency |
f, ν |
1 |
|
|
|
|
|
|
1 |
|
|
|
|
|
hertz |
1 |
|
|
hertz |
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
t |
|
t |
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
Impedance |
Z |
|
ml2 |
|
|
t |
|
ohm |
|
1 |
× 10−11 |
sec/cm |
||||||||||||
|
tq2 |
|
l |
9 |
||||||||||||||||||||
Inductance |
L |
|
ml2 |
|
|
t2 |
|
henry |
|
1 |
× 10−11 |
sec2/cm |
||||||||||||
|
q2 |
|
l |
9 |
||||||||||||||||||||
Length |
l |
l |
l |
meter (m) |
102 |
centimeter |
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(cm) |
Magnetic |
H |
|
q |
|
|
m1/2 |
|
ampere– |
4π × 10−3 |
oersted |
||||||||||||||
|
lt |
|
l1/2t |
|||||||||||||||||||||
intensity |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
turn/m |
|
|
|
|
|
Magnetic flux |
Φ |
|
ml2 |
|
|
m1/2l3/2 |
|
weber |
108 |
maxwell |
||||||||||||||
|
tq |
|
|
|
|
|
t |
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
Magnetic |
B |
|
m |
|
|
m1/2 |
|
tesla |
104 |
gauss |
||||||||||||||
|
tq |
|
l1/2t |
|||||||||||||||||||||
induction |
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Magnetic |
m, µ |
|
l2q |
|
|
m1/2l5/2 |
|
ampere–m2 |
103 |
oersted– |
||||||||||||||
|
t |
|
|
|
|
|
t |
|||||||||||||||||
moment |
|
|
|
|
|
|
|
|
|
|
|
|
cm3 |
|||||||||||
Magnetization |
M |
|
q |
|
|
m1/2 |
|
ampere– |
4π × 10−3 |
oersted |
||||||||||||||
|
lt |
|
l1/2t |
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
turn/m |
|
|
|
|
|
Magneto- |
M, |
|
q |
|
|
m1/2l1/2 |
|
ampere– |
|
4π |
|
gilbert |
||||||||||||
|
t |
|
|
|
|
|
t2 |
10 |
|
|||||||||||||||
motance |
Mmf |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
turn |
|
|
|
|
|
Mass |
m, M |
m |
m |
kilogram |
103 |
gram (g) |
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(kg) |
|
|
|
|
|
Momentum |
p, P |
|
ml |
|
ml |
kg–m/s |
105 |
g–cm/sec |
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
t |
|
|
t |
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
Momentum |
|
|
m |
|
m |
kg/m2–s |
10−1 |
g/cm2–sec |
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
l2t |
|
l2t |
||||||||||||||||||||
density |
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Permeability |
µ |
|
ml |
1 |
|
|
|
|
|
|
henry/m |
1 |
× 107 |
— |
||||||||||
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
q2 |
|
|
|
|
|
|
|
4π |
|||||||||||||||
11
|
|
Dimensions |
|
|
|
|
Physical |
Sym- |
|
|
SI |
Conversion |
Gaussian |
|
|
|||||
Quantity |
bol |
SI |
Gaussian |
Units |
Factor |
Units |
|
|
|
|
|
|
|
Permittivity ǫ
Polarization P
Potential |
V, φ |
Power P
Power
density
Pressure |
p, P |
Reluctance R
Resistance R
Resistivity |
η, ρ |
Thermal con- κ, k ductivity
Time t
Vector A
potential
Velocity v
Viscosity |
η, µ |
Vorticity ζ
Work W
t2q2
ml3
1
qm1/2
l2 l1/2t
ml2 m1/2l1/2
t2q t ml2 ml2
t3 t3
mm
lt3 lt3
mm
|
lt2 |
|
lt2 |
||||
|
q2 |
|
1 |
|
|
||
|
ml2 |
|
l |
||||
|
ml2 |
|
t |
|
|||
|
tq2 |
|
l |
||||
|
ml3 |
t |
|||||
|
tq2 |
||||||
|
|
|
|
|
|
||
|
ml |
|
ml |
||||
|
|
|
|
|
|
||
|
t3 |
|
t3 |
||||
t |
t |
||||||
|
ml |
|
|
m1/2l1/2 |
|||
|
tq |
|
|
|
|
t |
|
ll
tt
mm
lt |
lt |
|||
1 |
|
|
1 |
|
|
|
|
|
|
t |
t |
|||
ml2 |
|
ml2 |
||
t2 |
t2 |
|||
farad/m |
36π × 109 |
— |
|||
coulomb/m2 |
3 × 105 |
statcoulomb |
|||
|
|
|
|
|
/cm2 |
volt |
1 |
|
× 10−2 |
statvolt |
|
|
|
|
|||
3 |
|
||||
watt |
107 |
erg/sec |
|||
watt/m3 |
10 |
|
erg/cm3–sec |
||
pascal |
10 |
|
dyne/cm2 |
||
ampere–turn |
4π × 10−9 |
cm−1 |
|||
/weber |
|
|
|
|
|
ohm |
1 |
|
× 10−11 |
sec/cm |
|
|
|
|
|||
9 |
|
||||
ohm–m |
1 |
|
× 10−9 |
sec |
|
|
|
|
|||
9 |
|
||||
watt/m– |
105 |
erg/cm–sec– |
|||
deg (K) |
|
|
|
|
deg (K) |
second (s) |
1 |
|
|
second (sec) |
|
weber/m |
106 |
gauss–cm |
|||
m/s |
102 |
cm/sec |
|||
kg/m–s |
10 |
|
poise |
||
s−1 |
1 |
|
|
sec−1 |
|
joule |
107 |
erg |
|||
|
|
|
|
|
|
12
INTERNATIONAL SYSTEM (SI) NOMENCLATURE6
Physical |
Name |
Symbol |
Physical |
Name |
Symbol |
||
Quantity |
of Unit |
for Unit |
Quantity |
of Unit |
for Unit |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*length |
meter |
m |
electric |
volt |
V |
||
|
|
|
|
potential |
|
|
|
*mass |
kilogram |
kg |
electric |
ohm |
Ω |
||
|
|
|
|
||||
*time |
second |
s |
resistance |
|
|
||
*current |
ampere |
A |
electric |
siemens |
S |
||
*temperature |
kelvin |
K |
conductance |
|
|
||
|
|
|
|
||||
|
|
|
|
electric |
farad |
F |
|
*amount of |
mole |
mol |
capacitance |
|
|
||
substance |
|
|
magnetic flux |
weber |
Wb |
||
|
|
|
|
||||
*luminous |
candela |
cd |
|
|
|
|
|
intensity |
|
|
magnetic |
henry |
H |
||
†plane angle |
|
|
inductance |
|
|
||
radian |
rad |
magnetic |
tesla |
T |
|||
†solid angle |
|
|
|||||
steradian |
sr |
intensity |
|
|
|||
frequency |
hertz |
Hz |
luminous flux |
lumen |
lm |
||
energy |
joule |
J |
illuminance |
lux |
lx |
||
force |
newton |
N |
activity (of a |
becquerel |
Bq |
||
|
|
|
|
radioactive |
|
|
|
pressure |
pascal |
Pa |
source) |
|
|
||
power |
watt |
W |
absorbed dose |
gray |
Gy |
||
|
|
|
|
(of ionizing |
|
|
|
electric charge |
coulomb |
C |
radiation) |
|
|
||
|
|
|
|
|
|
|
|
*SI base unit |
†Supplementary unit |
|
|
|
|
||
|
|
METRIC PREFIXES |
|
|
|||
|
|
|
|
|
|
|
|
Multiple |
|
Prefix |
Symbol |
Multiple |
|
Prefix |
Symbol |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10−1 |
|
deci |
d |
10 |
|
deca |
da |
10−2 |
|
centi |
c |
102 |
|
hecto |
h |
10−3 |
|
milli |
m |
103 |
|
kilo |
k |
10−6 |
|
micro |
µ |
106 |
|
mega |
M |
10−9 |
|
nano |
n |
109 |
|
giga |
G |
10−12 |
|
pico |
p |
1012 |
|
tera |
T |
10−15 |
|
femto |
f |
1015 |
|
peta |
P |
10−18 |
|
atto |
a |
1018 |
|
exa |
E |
13
PHYSICAL CONSTANTS (SI)7
Physical Quantity |
Symbol |
Value |
Units |
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Boltzmann constant |
k |
|
|
|
|
1.3807 × 10−23 |
J K−1 |
|
Elementary charge |
e |
|
|
|
|
1.6022 × 10−19 |
C |
|
Electron mass |
me |
|
|
|
|
9.1094 × 10−31 |
kg |
|
Proton mass |
mp |
|
|
|
|
1.6726 × 10−27 |
kg |
|
Gravitational constant |
G |
|
|
|
|
6.6726 × 10−11 |
m3s−2kg−1 |
|
Planck constant |
h |
|
|
|
|
6.6261 × 10−34 |
J s |
|
|
h¯ = h/2π |
|
|
|
1.0546 × 10−34 |
J s |
||
Speed of light in vacuum |
c |
|
|
|
|
2.9979 × 108 |
m s−1 |
|
Permittivity of |
ǫ0 |
|
|
|
|
8.8542 × 10−12 |
F m−1 |
|
free space |
|
|
|
|
|
|
|
|
Permeability of |
µ0 |
|
|
|
|
|
4π × 10−7 |
H m−1 |
free space |
|
|
|
|
|
|
|
|
Proton/electron mass |
mp/me |
|
|
|
|
1.8362 × 103 |
|
|
ratio |
|
|
|
|
|
|
|
|
Electron charge/mass |
e/me |
|
|
|
|
1.7588 × 1011 |
C kg−1 |
|
ratio |
|
|
|
|
|
|
|
|
Rydberg constant |
R∞ = |
|
me4 |
1.0974 × 107 |
m−1 |
|||
|
|
2 |
3 |
|
||||
|
|
8ǫ0 |
|
ch |
5.2918 × 10−11 |
|
||
Bohr radius |
a0 = ǫ0h2/πme2 |
m |
||||||
Atomic cross section |
πa02 |
|
|
|
|
8.7974 × 10−21 |
m2 |
|
Classical electron radius |
re = e2/4πǫ0mc2 |
2.8179 × 10−15 |
m |
|||||
Thomson cross section |
(8π/3)re |
2 |
|
|
|
6.6525 × 10−29 |
m2 |
|
Compton wavelength of |
h/me c |
|
|
|
|
2.4263 × 10−12 |
m |
|
electron |
h/m¯ ec |
|
|
|
|
3.8616 × 10−13 |
m |
|
Fine-structure constant |
α = e2/2ǫ0hc |
7.2974 × 10−3 |
|
|||||
|
α−1 |
|
|
|
|
137.04 |
|
|
First radiation constant |
c1 = 2πhc2 |
|
|
3.7418 × 10−16 |
W m2 |
|||
Second radiation |
c2 = hc/k |
|
|
|
1.4388 × 10−2 |
m K |
||
constant |
|
|
|
|
|
|
|
|
Stefan-Boltzmann |
σ |
|
|
|
|
5.6705 × 10−8 |
W m−2K−4 |
|
constant |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14
Physical Quantity |
Symbol |
Value |
Units |
|
|
|
|
|
|
|
|
Wavelength associated |
λ0 = hc/e |
1.2398 × 10−6 |
m |
with 1 eV |
|
|
|
Frequency associated |
ν0 = e/h |
2.4180 × 1014 |
Hz |
with 1 eV |
|
|
|
Wave number associated |
k0 = e/hc |
8.0655 × 105 |
m−1 |
with 1 eV |
|
|
|
Energy associated with |
hν0 |
1.6022 × 10−19 |
J |
1 eV |
|
|
|
Energy associated with |
hc |
1.9864 × 10−25 |
J |
1 m−1 |
|
|
|
Energy associated with |
me3/8ǫ02h2 |
13.606 |
eV |
1 Rydberg |
|
|
|
Energy associated with |
k/e |
8.6174 × 10−5 |
eV |
1 Kelvin |
|
|
|
Temperature associated |
e/k |
1.1604 × 104 |
K |
with 1 eV |
|
|
|
Avogadro number |
NA |
6.0221 × 1023 |
mol−1 |
Faraday constant |
F = NA e |
9.6485 × 104 |
C mol−1 |
Gas constant |
R = NA k |
8.3145 |
J K−1mol−1 |
Loschmidt’s number |
n0 |
2.6868 × 1025 |
m−3 |
(no. density at STP) |
|
|
|
Atomic mass unit |
mu |
1.6605 × 10−27 |
kg |
Standard temperature |
T0 |
273.15 |
K |
Atmospheric pressure |
p0 = n0kT0 |
1.0133 × 105 |
Pa |
Pressure of 1 mm Hg |
|
1.3332 × 102 |
Pa |
(1 torr) |
|
|
|
Molar volume at STP |
V0 = RT0/p0 |
2.2414 × 10−2 |
m3 |
Molar weight of air |
Mair |
2.8971 × 10−2 |
kg |
calorie (cal) |
|
4.1868 |
J |
Gravitational |
g |
9.8067 |
m s−2 |
acceleration |
|
|
|
|
|
|
|
15
PHYSICAL CONSTANTS (cgs)7
Physical Quantity |
Symbol |
Value |
Units |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Boltzmann constant |
k |
|
|
1.3807 × 10−16 |
erg/deg (K) |
|
Elementary charge |
e |
|
|
4.8032 × 10−10 |
statcoulomb |
|
|
|
|
|
|
|
(statcoul) |
Electron mass |
me |
|
|
9.1094 × 10−28 |
g |
|
Proton mass |
mp |
|
|
1.6726 × 10−24 |
g |
|
Gravitational constant |
G |
|
|
6.6726 × 10−8 |
dyne-cm2/g2 |
|
Planck constant |
h |
|
|
6.6261 × 10−27 |
erg-sec |
|
|
h¯ = h/2π |
1.0546 × 10−27 |
erg-sec |
|||
Speed of light in vacuum |
c |
|
|
2.9979 × 1010 |
cm/sec |
|
Proton/electron mass |
mp/me |
|
|
1.8362 × 103 |
|
|
ratio |
|
|
|
|
|
|
Electron charge/mass |
e/me |
|
|
5.2728 × 1017 |
statcoul/g |
|
ratio |
|
|
|
|
|
|
Rydberg constant |
R∞ = |
2π2me4 |
|
1.0974 × 105 |
cm−1 |
|
|
ch3 |
|||||
Bohr radius |
a0 = h¯2/me2 |
5.2918 × 10−9 |
cm |
|||
Atomic cross section |
πa02 |
|
|
8.7974 × 10−17 |
cm2 |
|
Classical electron radius |
re = e2/mc2 |
2.8179 × 10−13 |
cm |
|||
Thomson cross section |
(8π/3)re |
2 |
|
6.6525 × 10−25 |
cm2 |
|
Compton wavelength of |
h/me c |
|
|
2.4263 × 10−10 |
cm |
|
electron |
h/m¯ ec |
|
|
3.8616 × 10−11 |
cm |
|
Fine-structure constant |
α = e2/hc¯ |
7.2974 × 10−3 |
|
|||
|
α−1 |
|
|
137.04 |
|
|
First radiation constant |
c1 = 2πhc2 |
3.7418 × 10−5 |
erg-cm2/sec |
|||
Second radiation |
c2 = hc/k |
1.4388 |
cm-deg (K) |
|||
constant |
|
|
|
|
|
|
Stefan-Boltzmann |
σ |
|
|
5.6705 × 10−5 |
erg/cm2- |
|
constant |
|
|
|
|
|
sec-deg4 |
Wavelength associated |
λ0 |
|
|
1.2398 × 10−4 |
cm |
|
with 1 eV |
|
|
|
|
|
|
16
Physical Quantity |
Symbol |
Value |
Units |
|
|
|
|
|
|
|
|
Frequency associated |
ν0 |
2.4180 × 1014 |
Hz |
with 1 eV |
|
|
|
Wave number associated |
k0 |
8.0655 × 103 |
cm−1 |
with 1 eV |
|
|
|
Energy associated with |
|
1.6022 × 10−12 |
erg |
1 eV |
|
|
|
Energy associated with |
|
1.9864 × 10−16 |
erg |
1 cm−1 |
|
|
|
Energy associated with |
|
13.606 |
eV |
1 Rydberg |
|
|
|
Energy associated with |
|
8.6174 × 10−5 |
eV |
1 deg Kelvin |
|
|
|
Temperature associated |
|
1.1604 × 104 |
deg (K) |
with 1 eV |
|
|
|
Avogadro number |
NA |
6.0221 × 1023 |
mol−1 |
Faraday constant |
F = NA e |
2.8925 × 1014 |
statcoul/mol |
Gas constant |
R = NAk |
8.3145 × 107 |
erg/deg-mol |
Loschmidt’s number |
n0 |
2.6868 × 1019 |
cm−3 |
(no. density at STP) |
|
|
|
Atomic mass unit |
mu |
1.6605 × 10−24 |
g |
Standard temperature |
T0 |
273.15 |
deg (K) |
Atmospheric pressure |
p0 = n0kT0 |
1.0133 × 106 |
dyne/cm2 |
Pressure of 1 mm Hg |
|
1.3332 × 103 |
dyne/cm2 |
(1 torr) |
|
|
|
Molar volume at STP |
V0 = RT0/p0 |
2.2414 × 104 |
cm3 |
Molar weight of air |
Mair |
28.971 |
g |
calorie (cal) |
|
4.1868 × 107 |
erg |
Gravitational |
g |
980.67 |
cm/sec2 |
acceleration |
|
|
|
|
|
|
|
17
FORMULA CONVERSION8
Here α = 102 cm m−1, β = 107 erg J−1, ǫ0 = 8.8542 × 10−12 F m−1, µ0 = 4π×10−7 H m−1, c = (ǫ0µ0)−1/2 = 2.9979×108 m s−1, and h¯ = 1.0546×
10−34 J s. To derive a dimensionally correct SI formula from one expressed in
¯ ¯ ¯
Gaussian units, substitute for each quantity according to Q = kQ, where k is the coe cient in the second column of the table corresponding to Q (overbars
¯2 2
denote variables expressed in Gaussian units). Thus, the formula a¯0 = h¯ /m¯ e¯ for the Bohr radius becomes αa0 = (¯hβ)2/[(mβ/α2)(e2αβ/4πǫ0)], or a0 = ǫ0h2/πme2. To go from SI to natural units in which h¯ = c = 1 (distinguished
ˆ−1 ˆ ˆ
by a circumflex), use Q = k Q, where k is the coe cient corresponding to
Q in the third column. Thus aˆ0 = 4πǫ0h¯2/[(mˆ h/c¯ |
)(ˆe2ǫ0hc¯ )] = 4π/mˆ eˆ2. (In |
||||
transforming from SI units, do not substitute for ǫ0, µ0, or c.) |
|||||
|
|
|
|
|
|
|
Physical Quantity |
Gaussian Units to SI |
Natural Units to SI |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Capacitance |
α/4πǫ0 |
ǫ0−1 |
|
|
|
Charge |
(αβ/4πǫ0)1/2 |
(ǫ0hc¯ )−1/2 |
|
|
|
Charge density |
(β/4πα5ǫ0)1/2 |
(ǫ0hc¯ )−1/2 |
|
|
|
Current |
(αβ/4πǫ0)1/2 |
(µ0/hc¯ )1/2 |
|
|
|
Current density |
(β/4πα3ǫ0)1/2 |
(µ0/hc¯ )1/2 |
|
|
|
Electric field |
(4πβǫ0/α3)1/2 |
(ǫ0/hc¯ )1/2 |
|
|
|
Electric potential |
(4πβǫ0/α)1/2 |
(ǫ0/hc¯ )1/2 |
|
|
|
Electric conductivity |
(4πǫ0)−1 |
ǫ0−1 |
|
|
|
Energy |
β |
(¯hc)−1 |
|
|
|
Energy density |
β/α3 |
(¯hc)−1 |
|
|
|
Force |
β/α |
(¯hc)−1 |
|
|
|
Frequency |
1 |
c−1 |
|
|
|
Inductance |
4πǫ0/α |
µ0−1 |
|
|
|
Length |
α |
1 |
|
|
|
Magnetic induction |
(4πβ/α3µ0)1/2 |
(µ0hc¯ )−1/2 |
|
|
|
Magnetic intensity |
(4πµ0β/α3)1/2 |
(µ0/hc¯ )1/2 |
|
|
|
Mass |
β/α2 |
c/h¯ |
|
|
|
Momentum |
β/α |
h¯−1 |
|
|
|
Power |
β |
(¯hc2)−1 |
|
|
|
Pressure |
β/α3 |
(¯hc)−1 |
|
|
|
Resistance |
4πǫ0/α |
(ǫ0/µ0)1/2 |
|
|
|
Time |
1 |
c |
|
|
|
Velocity |
α |
c−1 |
|
|
18
MAXWELL’S EQUATIONS
Name or Description |
|
SI |
|
|
|
|
|
Gaussian |
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Faraday’s law |
|
|
× E = − |
∂B |
× E = − |
1 ∂B |
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
∂t |
c |
∂t |
|
|
|
||||||||||||||||
Ampere’s law |
|
|
× H = |
∂D |
× H = |
1 ∂D |
|
4π |
|
||||||||||||||
|
|
|
|
+ J |
|
|
|
+ |
|
|
J |
||||||||||||
|
|
|
∂t |
c |
∂t |
|
c |
||||||||||||||||
Poisson equation |
|
|
· D = ρ |
|
|
|
|
|
· D = 4πρ |
|
|
|
|||||||||||
[Absence of magnetic |
|
· B = 0 |
|
|
|
|
|
· B = 0 |
|
|
|
||||||||||||
monopoles] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Lorentz force on |
|
|
q (E + v |
|
|
B) |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
× |
q E + c v × B |
|
|
|
|||||||||||||||||
charge q |
|
|
|
|
|
|
|
|
|
|
|||||||||||||
Constitutive |
|
|
D = ǫE |
|
|
|
|
|
|
D = ǫE |
|
|
|
||||||||||
relations |
|
|
B = µH |
|
|
|
|
|
|
B = µH |
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
In a plasma, µ ≈ µ0 |
= 4π × 10−7 H m−1 (Gaussian units: µ ≈ 1). |
The |
|||||||||||||||||||||
permittivity satisfies |
ǫ |
≈ ǫ0 = 8.8542 × 10−12 F m−1 (Gaussian: |
ǫ ≈ 1) |
||||||||||||||||||||
provided that all charge is regarded as free. Using the drift approximation
2 |
|
|
polarization charge density gives rise to a dielec- |
||||||||
v = E × B/B to calculate |
|||||||||||
9 |
2 |
|
2 |
2 |
|
||||||
tric constant K ≡ ǫ/ǫ0 = 1 + 36π ×10 ρ/B |
|
(SI) = 1 + 4πρc /B |
|
(Gaussian), |
|||||||
where ρ is the mass density. |
|
|
|
|
|
|
|
|
|||
The electromagnetic energy in volume V is given by |
|
|
|||||||||
|
W = |
1 |
ZV dV (H · B + E · D) |
(SI) |
|||||||
|
|
||||||||||
|
2 |
||||||||||
|
= |
1 |
ZV dV (H · B + E · D) |
(Gaussian). |
|||||||
|
|
||||||||||
|
8π |
||||||||||
Poynting’s theorem is |
|
|
|
|
|
|
|
|
|||
|
∂W |
|
|
|
|
|
|
|
|
||
|
|
+ ZS N · dS = − ZV |
dV J · E, |
|
|
||||||
|
∂t |
|
|
||||||||
where S is the closed surface bounding V and the Poynting vector (energy flux across S) is given by N = E × H (SI) or N = cE × H/4π (Gaussian).
19
ELECTRICITY AND MAGNETISM
In the following, ǫ = dielectric permittivity, µ = permeability of conductor, µ′ = permeability of surrounding medium, σ = conductivity, f = ω/2π = radiation frequency, κm = µ/µ0 and κe = ǫ/ǫ0. Where subscripts are used, ‘1’ denotes a conducting medium and ‘2’ a propagating (lossless dielectric) medium. All units are SI unless otherwise specified.
Permittivity of free space
Permeability of free space
Resistance of free space
Capacity of parallel plates of area A, separated by distance d
Capacity of concentric cylinders of length l, radii a, b
Capacity of concentric spheres of radii a, b
Self-inductance of wire of length l, carrying uniform current
Mutual inductance of parallel wires of length l, radius a, separated by distance d
Inductance of circular loop of radius b, made of wire of radius a, carrying uniform current
Relaxation time in a lossy medium
Skin depth in a lossy medium
Wave impedance in a lossy medium
Transmission coe cient at
conducting surface9 (good only for T 1)
Field at distance r from straight wire carrying current I (amperes)
Field at distance z along axis from circular loop of radius a carrying current I
ǫ0 = 8.8542 × 10−12 F m−1
µ0 = 4π × 10−7 H m−1
= 1.2566 × 10−6 H m−1 R0 = (µ0/ǫ0)1/2 = 376.73 Ω
C= ǫA/d
C= 2πǫl/ ln(b/a)
C= 4πǫab/(b − a)
L= µl/8π
L= (µ′l/4π) [1 + 4 ln(d/a)]
L = b µ′ [ln(8b/a) − 2] + µ/4
τ= ǫ/σ
δ = (2/ωµσ)1/2 = (πf µσ)−1/2 Z = [µ/(ǫ + iσ/ω)]1/2
T = 4.22 × 10−4(f κm1κe2/σ)1/2
Bθ = µI/2πr tesla
= 0.2I/r gauss (r in cm)
Bz = µa2I/[2(a2 + z2)3/2]
20
